Optimization of roll forming process parameters—a semi-empirical approach

  • John Paralikas
  • Konstantinos Salonitis
  • George Chryssolouris
ORIGINAL ARTICLE

Abstract

The roll forming process parameters play a major role in the quality of the final roll-formed product. Optimum configuration without any cost increase in the roll forming line could present accurate and flawless products. In this paper, a roll forming process experimental modelling of a symmetrical U-section profile from advanced high strength steel (AHSS) material (type DP600) is presented. The factors selected for this study are the roll forming line velocity, the inter-distance between roll stations, the roll gap, and the diameter of the rolls. An optimization procedure for the roll forming line, via statistical design of the experimental simulation runs, is also presented. The optimum values of process parameters are calculated for minimum elastic longitudinal strains and shear strains, at strip edge, for each roll station. A reduction of 20–35% in elastic longitudinal strains could occur for all roll stations, and 30–50% reduction in shear strains occurs for roll stations with a greater folding angle, as this leads to roll-formed products of a better quality. Finally, the contribution of each factor on the longitudinal and shear strains has been calculated, showing that the inter-distance between the roll stations plays a dominant role in the roll forming process.

Keywords

Roll forming FEA Modelling Statistical design of experiments Redundant deformations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chryssolouris G (2005) Manufacturing systems—theory and practice, 2nd edn. Springer-Verlag, New YorkGoogle Scholar
  2. 2.
    Wick C, Benedict J, Veilleux R (1984) Tool and manufacturing engineers handbook: forming, vol 2. SME, Dearborn, MIGoogle Scholar
  3. 3.
    International Iron & Steel Institute (2006) Advanced high strength steel (AHSS) application guidelines. Committee on Automotive applications, Middletown, OHGoogle Scholar
  4. 4.
    Halmos GT (2006) Roll forming handbook. CRC Press, New YorkGoogle Scholar
  5. 5.
    Peace GS (1992) Taguchi methods—a hands-on approach. Addisson Wesley, New YorkGoogle Scholar
  6. 6.
    Bui QV, Ponthot JP (2007) Numerical simulation of cold roll-forming processes. J Mater Process Technol. doi:10.1016/j.jmatprotec.2007.08.073 Google Scholar
  7. 7.
    Jeong SH, Lee SH, Kim GB, Seo HJ, Kim TH (2008) Computer simulation of U-channel for under-rail roll forming using rigid plastic finite element methods. J Mater Process Technol . doi:10.1016/j.jmatprotec.2007.11.130 Google Scholar
  8. 8.
    Paralikas J, Salonitis K, Chryssolouris G (2009) Investigation of the effects of main roll-forming process parameters on quality for a V-section profile from AHSS. Int J Adv Manuf Tech 44:223–237. doi:10.1007/s00170-008-1822-9 CrossRefGoogle Scholar
  9. 9.
    Salonitis K, Stavropoulos P, Paralikas J, Chryssolouris G (2007) Modeling of Cold Roll forming process: a preliminary theoretical investigation. Proceedings of the IFAC Workshop on Manufacturing Modelling, Management and Control. Budapest, Hungary, pp 211–216Google Scholar
  10. 10.
    Salonitis K, Paralikas J, Chryssolouris G (2008) Roll forming of AHSS: numerical simulation and investigation of effects of main process parameters on quality: engineering against fracture. Proceedings of the 1st International Conference, pp 327–336. doi:10.1007/978-1-4020-9402-6_26
  11. 11.
    Bhattacharyya D, Smith PD, Yee CH, Collins IF (1984) The prediction of deformation length in cold roll forming. J Mech Work Technol 9:181–191CrossRefGoogle Scholar
  12. 12.
    Heislitz F, Livatyali H, Ahmetoglu MA, Kinzel GL, Altan T (1996) Simulation of roll forming process with the 3D FEM code PAM-STAMP. J Mater Process Technol 59:59–67CrossRefGoogle Scholar
  13. 13.
    Sheu JJ (2004) Simulation and optimization of the cold roll forming process, materials processing and design: modeling, simulation and applications. Proceedings of the 8th international conference on numerical methods in industrial forming processes. doi:10.1063/1.1766566
  14. 14.
    Phadke MS (1989) Quality engineering using robust design. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  15. 15.
    Darm K (1989) Determination of longitudinal strains in roll forming of standard section in a multi-stand machine. Institute for Production Technology, GermanyGoogle Scholar
  16. 16.
    Hong S, Lee S, Kim N (2001) A parametric study on forming length in roll forming. J Mater Process Technol 113:774–778CrossRefGoogle Scholar
  17. 17.
    Hallquist JO (2006) LS-Dyna theory manual. Livermore Software Technology Corp, Livermore, CAGoogle Scholar
  18. 18.
    Barlat F, Lege DJ, Brem JC (1991) A six-component yield function for anisotropic materials. Int J Plast 7:693–712CrossRefGoogle Scholar
  19. 19.
    ANSYS Inc (2005) ANSYS LS-Dyna user guide: ANSYS release 10.0. ANSYS Inc, Canonsburg, PAGoogle Scholar
  20. 20.
    Auto/Steel Partnership (2008) Publications. URL:http://www.a-sp.org/publications.htm
  21. 21.
    Helborg S (2007) Finite element simulation of roll forming, Master thesis, Solid mechanics. Linkoping University, SwedenGoogle Scholar
  22. 22.
    Lindgren M (2007) Cold roll forming of a U-channel made of high strength steel. J Mater Process Technol 186:77–81. doi:10.1016/j.jmatprotec.2006.12.017 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • John Paralikas
    • 1
  • Konstantinos Salonitis
    • 1
  • George Chryssolouris
    • 1
  1. 1.Laboratory for Manufacturing Systems and Automation, Department of Mechanical Engineering and AeronauticsUniversity of PatrasPatrasGreece

Personalised recommendations