New systematic and time-saving procedure to design cup grinding wheels for the application of ultrasonic-assisted grinding

  • Christian Brecher
  • Ralf Schug
  • Andreas Weber
  • Christian Wenzel
  • Sophia Hannig
SPECIAL ISSUE - ORIGINAL ARTICLE

Abstract

Since glass and ceramic materials have beneficial properties, they have gained more importance in numerous technical applications during the last 30 years. For example, nowadays, ceramics are used as artificial hip joints or as mechanical seals for highest relative speeds. Glass components are used for multitude of optical applications like cameras and reflectors. But besides a lot of advantages, the processing of these materials is very difficult. In particular, this contains the manufacturing of small components like microreactor plates or glass wafers with hundreds of small holes, too. Using ultrasonic-assisted grinding, the treatment can significantly be optimized and higher removal rates can be realized. For the generation of ultrasonic waves, often piezoactors are used that excite the grinding tools with vibrations of 20 kHz and amplitudes of a few microns (Markov 1966; Kuttruff 1988). Using an ultrasonic wave, the tool geometry is strongly restricted to guarantee the hybrid functionality (Siegert 2002; Dawe Instruments Ltd. 1967; Derks 1984). The paper describes a new way to calculate the design of tools suitable for their use in ultrasonic-assisted grinding. As a machining process, the manufacturing of spherical optics with cup-grinding wheels is selected.

Keywords

Ultrasonic-assisted grinding Method to design vibrating components Coupling of simulation tools 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Markov AI (1966) Ultrasonic machining of intractable materials. Iliffe Books, LondonGoogle Scholar
  2. 2.
    Brecher C, Klocke F, Schug R, Weber A (2005) Ultraschalleinsatz—Produktionssteigerung bei der Zerspanung von Glas und Keramik, Industrie Diamanten Rundschau IDR, 39, Jahrgang, III/2005, Seite 244-250, ISSN 0935Google Scholar
  3. 3.
    Kuttruff H (1988) Physik und Technik des Ultraschalls. Hirtzel, StuttgartGoogle Scholar
  4. 4.
    Wahl M (1999) Angewandte Strukturanalyse; Vorlesungsumdruck der Fachhochschule Aachen, Verlag Mainz, ISBN 3-89653-567-6Google Scholar
  5. 5.
    Siegert K (2002) Ultraschallbeeinflusstes Umformen metallischer Werkstoffe. Abschlussbericht des Sonderforschungsbereichs 543, Universität StuttgartGoogle Scholar
  6. 6.
    Millner R (1987) Ultraschalltechnik Grundlagen und Anwendungen. Weinheim, PhysikGoogle Scholar
  7. 7.
    Colwell L (1956) The effects of high-frequency vibrations in grinding. Transactions of the ASME, pp. 124–131Google Scholar
  8. 8.
    Dawe Instruments Ltd (1967) Dawe type 1138A ultrasonic machine tool, metalworking production 111(17):77Google Scholar
  9. 9.
    Derks PLLM (1984) The design of ultrasonic resonators with wide output cross-section. Dissertation, Technische Hochschule EindhovenGoogle Scholar
  10. 10.
    Lazan BJ (1968) Damping of materials and members in structural mechanics. Pergamon, OxfordGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • Christian Brecher
    • 1
    • 2
  • Ralf Schug
    • 2
  • Andreas Weber
    • 2
  • Christian Wenzel
    • 2
  • Sophia Hannig
    • 2
  1. 1.Werkzeugmaschinenlabor (WZL)RWTH Aachen UniversityAachenGermany
  2. 2.Fraunhofer Institute for Production TechnologyAachenGermany

Personalised recommendations