Developments in microultrasonic machining (MUSM) at FEMTO-ST

  • J. J. Boy
  • E. Andrey
  • A. Boulouize
  • Chantal Khan-Malek


The aim of the article is to present new developments in microultrasonic machining concerning design and manufacture of a complete acoustic system optimized for ultraprecise processing on 2-in. wafer and examples of microstructures produced at FEMTO-ST institute, particularly in piezoelectric materials. The potentialities and the limitations of the ultrasonic machining technique are discussed. The choice and the dimensions of the material for the acoustic transducer were defined through finite element modeling. Other parameters affecting the machining process such as static load of the tool, vibration amplitude, grain material and size of the abrasive slurry, and workpiece characteristics were hierarchized experimentally in order to increase machining quality (surface state, precision) and minimize tool wear.


Ultrasonic machining Sonotrode Tool wear Piezoelectric transducer Aspect ratio Microtechnology Glass Quartz PZT 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Komaraiah M, Manan MA, Reddy PN, Victor S (1988) Investigation of surface roughness and accuracy in ultrasonic machining. Precis Eng 10(N2):59–65CrossRefGoogle Scholar
  2. 2.
    Komaraiah M, Reddy N (1993) A study on the influence of workpiece properties in ultrasonic machining. Int J Mach Tools Manuf 33(N3):495–505CrossRefGoogle Scholar
  3. 3.
    Komaraiah M, Reddy N (1993) Relative performance of tool materials in ultrasonic machining. Wear 161:l–10CrossRefGoogle Scholar
  4. 4.
    Thoe TB, Aspinwall DK, Wise MLH (1998) Review on ultrasonic machining. Inter Jour Mach Tools Manufact 38(N4):239–255CrossRefGoogle Scholar
  5. 5.
    Pei ZJ, Ferreira PM (1998) Modeling of ductile-mode material removal in rotary ultrasonic machining. International Journal of Machine & Manufacture 38:1399–1418CrossRefGoogle Scholar
  6. 6.
    Markov IA (1966) Machining of intractable materials with ultrasonic and sonic vibrations. Illiffe Books, LondonGoogle Scholar
  7. 7.
    Klocke F, Dambon O, Capudi Filho GG (2005) Influence of the polishing process on the near-surface zone of hardened and unhardened steel. Wear 258:1794–1803CrossRefGoogle Scholar
  8. 8.
    Guzzo PL, Raslan AA, De Mello JDB (2003) Ultrasonic abrasion of quartz crystals. Wear 255:67–77CrossRefGoogle Scholar
  9. 9.
    Jianxin D, Taichiu L (2002) Ultrasonic machining of alumina-based ceramic composites. J Eur Ceram Soc 22:1235–1241CrossRefGoogle Scholar
  10. 10.
    Singh R, Khamba JS (2006) Ultrasonic machining of titanium and its alloys: a review. J Mater Process Technol 173:125–135CrossRefGoogle Scholar
  11. 11.
    Yamni K, Boy JJ, Yacoubi A (2001) Temperature effect on the ferrobielastic behaviour of the quartz crystal. Annales de Chimie et Sciences des Matériaux 26:19–22CrossRefGoogle Scholar
  12. 12.
    Ichida Y, Sato R, Morimoto Y, Kobayashi K (2005) Material removal mechanisms in non-contact ultrasonic abrasive machining. Wear 258:107–114CrossRefGoogle Scholar
  13. 13.
    Curodeau A, Guay J, Rodrigue D et al (2008) Ultrasonic abrasive m-machining with thermoplastic tooling. Int J Mach Tools Manuf 48:1553–1561CrossRefGoogle Scholar
  14. 14.
    Thoe TB, Aspinwall DK, Killey N (1999) Combined ultrasonic and electrical discharge machining of ceramic coated nickel alloy. J Mater Process Technol 92–93:323–328CrossRefGoogle Scholar
  15. 15.
    Yan BH, Wang AC, Huang CY, Huang FY (2002) Study of precision micro-holes in borosilicate glass using microEDM combined with micro ultrasonic vibration machining. Int J Mach Tools Manuf 42:1105–1112CrossRefGoogle Scholar
  16. 16.
    Wansheng Z, Zhenlong W, Schichun D et al (2002) Ultrasonic and electric discharge machining to deep and small hole on titanium alloy. J Mater Process Technol 120:101–106CrossRefGoogle Scholar
  17. 17.
    Soundararajan VSV, Radhakrishnan V (1986) An experimental investigation on the basic mechanisms involved in ultrasonic machining. Int J Mach Tool Des Res 26(3):307–321CrossRefGoogle Scholar
  18. 18.
    Choi JP, Jeon BH, Kim BH (2007) Chemical-assisted ultrasonic machining of glass. J Mater Process Technol 191:153–156CrossRefGoogle Scholar
  19. 19.
    Hocheng H, Kuo KL (2002) On-line tool wear monitoring during ultrasonic machining using tool resonance frequency. J Mater Process Technol 123:80–84CrossRefGoogle Scholar
  20. 20.
    Andrey E, Boy JJ, Khan Malek C (2005) Tool wear for micro-ultrasonic machining (MUSM). 5th Int. Conf. European Society for precision Engineering and Nanotechnology, Montpellier, France, May 8–11 2005, Proc. EUSPEN 05:345–34Google Scholar
  21. 21.
    Rozenberg LD (ed) (1973) Physical principles of ultrasonics technology. Ultrasonic cutting vol 1. Plenum, NewGoogle Scholar
  22. 22.
    Egashira K, Masuzawa T, Fujino M, Sun X-Q (1997) Application of USM to micromachining by on-the-machine tool fabrication. International Journal of Electrical Machining 2:31–36Google Scholar
  23. 23.
    Dam H, Quist P, Schreiber MP (1995) Productivity, surface quality, and tolerances in ultrasonic machining of ceramics. J Mater Process Technol 51:358–368CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • J. J. Boy
    • 1
  • E. Andrey
    • 1
  • A. Boulouize
    • 2
  • Chantal Khan-Malek
    • 3
  1. 1.FEMTO-ST—UMR CNRS 6174/dept TFBesanconFrance
  2. 2.TEMIS Innovation (µUSM)—18BesanconFrance
  3. 3.FEMTO-ST—UMR CNRS 6174/dept MN2S—32Besancon CedexFrance

Personalised recommendations