On acoustic emissions in percussion laser drilling

ORIGINAL ARTICLE

Abstract

Laser drilling is a well established sheet metal processing method. The development of a monitoring system capable of assessing the dimensions of holes is the subject of this work. This paper investigates the applicability of an acoustic-based monitoring system for the percussion laser drilling process. Correlation between the sensor output and the hole's geometry, determined by its depth and upper diameter, is investigated and the results are presented. In general, the results indicate that a correlation exists between the acoustic signal output and the depth of the hole.

Keywords

Percussion laser drilling Process monitoring Acoustic emissions Geometrical characteristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chryssolouris G (1991) Laser machining: theory and practice. Springer, New YorkGoogle Scholar
  2. 2.
    Ready JF (2002) LIA handbook of laser materials processing. Laser Institute of America, Magnolia, ToledoGoogle Scholar
  3. 3.
    Salonitis K, Stournaras A, Tsoukantas G, Stavropoulos P, Chryssolouris G (2007) A theoretical and experimental investigation on limitations of pulsed laser drilling. J Mater Process Technol 183:96–103. doi:10.1016/j.jmatprotec.2006.09.031 CrossRefGoogle Scholar
  4. 4.
    Salonitis SK, Stavropoulos P, Chryssolouris G (2008) Theoretical and experimental investigation of pulsed laser grooving process. Int J Adv Manuf Technol. . doi:10.1007/s00170-008-1818-5 Google Scholar
  5. 5.
    Yeo CY, Tam SC, Jana S, Lau MWS (1994) A technical review of the laser drilling of aerospace materials. J Mater Process Technol 42:15–49. doi:10.1016/0924-0136(94)90073-6 CrossRefGoogle Scholar
  6. 6.
    Yilbas BS (1997) Parametric study to improve laser hole drilling process. J Mater Process Technol 70:264–273. doi:10.1016/S0924-0136(97)00076-9 CrossRefGoogle Scholar
  7. 7.
    Yeack CE, Melcher RL, Klauser HE (1982) Transient photoacoustic monitoring of pulsed lased drilling. Appl Phys Lett 41(11):1043–1044. doi:10.1063/1.93381 CrossRefGoogle Scholar
  8. 8.
    Cryssolouris G, Sheng P (1994) Investigation of acoustic sensing for laser machining processes—Part 1: Laser drilling. J Mater Process Technol 43:125–143. doi:10.1016/0924-0136(94)90017-5 CrossRefGoogle Scholar
  9. 9.
    Grad L, Mozina J (1998) Laser pulse influence shape on optically induced dynamic processes. Appl Surf Sci 127–129:999–1004. doi:10.1016/S0169-4332(97)00781-2 CrossRefGoogle Scholar
  10. 10.
    Strgar S, Mozina J (2002) An optodynamic determination of the depth of laser-drilled holes, by the simultaneous detection of ultrasonic waves in the air and in the workpiece. Ultrasonics 40:791–795. doi:10.1016/S0041-624X(02)00211-1 CrossRefGoogle Scholar
  11. 11.
    Stauter C, Gerard P, Fontaine J, Engel T (1997) Laser ablation acoustical monitoring. Appl Surf Sci 109/110:174–178. doi:10.1016/S0169-4332(96)00655-1 CrossRefGoogle Scholar
  12. 12.
    Keuster JD, Duflou JR, Kruth J-P (2006) Monitoring of high-power CO2 laser cutting by means of an acoustic microphone and photodiodes. Int J Adv Manuf Technol . doi:10.1007/s00170-006-0695-z Google Scholar
  13. 13.
    Gu H, Duley WW (1996) A statistical approach to acoustic monitoring of laser welding. J Appl Phys 29:556–560Google Scholar
  14. 14.
    Gu H, Duley WW (1996) Resonant acoustic emission during laser welding of metals. J Phys D Appl Phys 29:550–555. doi:10.1088/0022-3727/29/3/010 CrossRefGoogle Scholar
  15. 15.
    Farson DF, Kim KR (1999) Generation of optical and acoustic emissions in laser weld plumes. J Appl Phys 85:1329–1336. doi:10.1063/1.369263 CrossRefGoogle Scholar
  16. 16.
    Cryssolouris G, Sheng P (1994) Investigation of acoustic sensing for laser machining processes—Part 2: Laser grooving and cutting. J Mater Process Technol 43:145–163. doi:10.1016/0924-0136(94)90018-3 CrossRefGoogle Scholar
  17. 17.
    Chryssolouris G, Sheng P (1991) Process control of laser grooving using acoustic sensing. Trans ASME 113:268–275. doi:10.1115/1.2924346 CrossRefGoogle Scholar
  18. 18.
    Kurita T, Ono T, Morita N (2000) Study on numerical analysis of frequency characteristics of laser processing sound. J Mater Process Technol 101:193–197. doi:10.1016/S0924-0136(00)00456-8 CrossRefGoogle Scholar
  19. 19.
    Kurita T, Ono T, Nakai T (2001) A study of processed area monitoring using the strength of YAG processing sound. J Mater Process Technol 112:37–42. doi:10.1016/S0924-0136(00)00883-9 CrossRefGoogle Scholar
  20. 20.
    Lee JM, Watkins KG (2000) In-process monitoring techniques for laser cleaning. Opt Lasers Eng 34:429–442. doi:10.1016/S0143-8166(00)00073-7 CrossRefGoogle Scholar
  21. 21.
    Kim T, Lee JM, Cho SH, Kim TH (2005) Acoustic emission monitoring during laser shock cleaning of silicon wafers. Opt Lasers Eng 43:1010–1020. doi:10.1016/j.optlaseng.2004.07.004 CrossRefGoogle Scholar
  22. 22.
    Stournaras A, Salonitis K, Chryssolouris G (2009) Optical emissions for monitoring of the percussion laser drilling process. Int J Adv Manuf Technol. doi:10.1007/s00170-009-2111-y Google Scholar
  23. 23.
    Tonshoff HK, Ostendorf A, Korber K, Hillers O (2001) Principles of reference-free process monitoring for laser material processing based on a multiple sensor system. In: Proceedings of the 20th International Congress of Lasers and Electro-Optics (ICALEO), Jacksonville, 15–18 October 2001.Google Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  1. 1.Laboratory for Manufacturing Systems & Automation, Department of Mechanical Engineering & AeronauticsUniversity of PatrasPatrasGreece

Personalised recommendations