An inter-machine material handling system for micro-manufacturing based on using a standard carrier

  • Antonio J. Sanchez-Salmeron
  • Rafael Lopez-Tarazon
  • Roberto Guzman-Diana
  • Carlos Ricolfe-Viala
SPECIAL ISSUE - ORIGINAL ARTICLE

Abstract

Lack of standardization is often a key problem area limiting the applications of any new automated micro-handling technology, due to that equipment makers may have to spend an excessive amount of time and resources to customize automation solutions. Carrier-based material handling systems provide product-independent solutions. Product independency is an essential requirement for re-using material handling systems, because they allow product change without mechanical changes in the transport devices. This paper describes a new automated inter-machine material handling system for micro-manufacturing integration, based on the standard carrier DIN-32561. The main task of the system is to transport (full/empty) carriers between different stations/machines in a micro-manufacturing plant, to integrate assembly and manufacturing. The authors designed a conveyor belt and an automated guided vehicle system to fit into a linear pick-and-place micro-manufacturing plant. Prototypes of the different components were then developed and tested.

Keywords

Material handling system Micro-manufacturing Standard carrier Automation Automated guided vehicles Conveyors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sanchez-Salmeron AJ, Lopez-Tarazon R, Guzman-Diana R, Ricolfe-Viala C (2005) Recent development in micro-handling systems for micro-manufacturing. J Mater Process Technol 167(2–3):499–507CrossRefGoogle Scholar
  2. 2.
    Raj T, Shankar R, Suhaib M (2007) A review of some issues and identification of some barriers in the implementation of FMS. Int J Flex Manuf Syst 19(1):1–40. doi:10.1007/s10696-007-9015-7 MATHCrossRefGoogle Scholar
  3. 3.
    Berruet P, Lallican JL, Rossi A, Philippe JL (2007) Generation of control for conveying systems based on component approach, ISIC. IEEE International Conference on Systems, Man and Cybernetics, 2007, pp.1408–1414.Google Scholar
  4. 4.
    Hussain T, Frey G (2005) Migration of a PLC controller to an IEC 61499 compliant distributed control system: hands-on experiences. Proceedings of the 2005 IEEE International Conference on Robotics and Automation. ICRA 2005, pp. 3984–3989Google Scholar
  5. 5.
    Nourelfath M, Niel E (2004) Modular supervisory control of an experimental automated manufacturing system. Control Eng Pract 12:205–216. doi:10.1016/S0967-0661(03)00056-X CrossRefGoogle Scholar
  6. 6.
    Johansson B, Williams EJ, Alenljung T (2004) Using autonomous modular material handling equipment for manufacturing flexibility, Proceedings of the 2004 Winter, vol. 2, pp. 1115-1121Google Scholar
  7. 7.
    Le-Anh T, De Koster MBM (2006) A review of design and control of automated guided vehicle systems. Eur J Oper Res 171(1):1–23MATHCrossRefGoogle Scholar
  8. 8.
    Roberts CM (2006) Radio frequency identification (RFID). Comput Secur 25:18–26. doi:10.1016/j.cose.2005.12.003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • Antonio J. Sanchez-Salmeron
    • 1
  • Rafael Lopez-Tarazon
    • 2
  • Roberto Guzman-Diana
    • 2
  • Carlos Ricolfe-Viala
    • 1
  1. 1.Departamento de Ingeniería de Sistemas y AutomáticaUniversidad Politécnica de ValenciaValenciaSpain
  2. 2.Robotnik AutomationValenciaSpain

Personalised recommendations