Optical emissions for monitoring of the percussion laser drilling process

  • Aristidis Stournaras
  • Konstantinos Salonitis
  • George Chryssolouris


In percussion laser drilling, a sufficiently powerful laser beam is used for the formation of a hole on the workpiece. In this study, the investigation of utilizing optical signals, acquired by means of photodiodes and emitted from the processing zone for real-time monitoring, is presented. The correlation between the sensor output and the geometry of the hole, determined by the depth and upper diameter, is investigated, and the results are presented. In general, the results indicate that there is a strong correlation between the optical signal output and the diameter of the hole.


Percussion laser drilling Process monitoring Geometrical characteristics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chryssolouris G (1991) Laser machining: theory and practice. Springer, BerlinGoogle Scholar
  2. 2.
    Salonitis K, Stournaras A, Tsoukantas G, Stavropoulos P, Chryssolouris G (2007) A theoretical and experimental investigation on limitations of pulsed laser drilling. J Mater Process Technol 183:96–103. doi: 10.1016/j.jmatprotec.2006.09.031 CrossRefGoogle Scholar
  3. 3.
    Ready JF (ed) (2002) LIA Handbook of laser materials processing. Laser Institute of America, Orlando, FLGoogle Scholar
  4. 4.
    Stournaras A, Salonitis K, Stavropoulos P, Chryssolouris G (2008) Theoretical and experimental investigation of pulsed laser grooving process. Int J Adv Manuf Technol. doi: 10.1007/s00170-008-1818-5 Google Scholar
  5. 5.
    Tsoukantas G, Salonitis K, Stavropoulos P, Chryssolouris G (2002) An Overview of 3D laser materials processing concepts. Proc SPIE Int Soc Opt Eng 5131:224–228. doi: 10.1117/12.513639 Google Scholar
  6. 6.
    Chryssolouris G, Tsoukantas G, Salonitis K, Stavropoulos P, Karagiannis S (2002) Laser Machining Modelling and Experimentation-An Overview. Proc SPIE Int Soc Opt Eng 5131:158–168. doi: 10.1117/12.513593 Google Scholar
  7. 7.
    Brajdic M, Walther K, Eppelt U (2008) Analysis of laser deep drilled holes in stainless steel by superposed pulsed Nd:YAG radiation. Opt Lasers Eng 46:648–655. doi: 10.1016/j.optlaseng.2008.04.017 CrossRefGoogle Scholar
  8. 8.
    Dietrich J, Bradjic M, Walther K, Horn A, Kelbassa I, Poprawe R (2008) Investigation of increased drilling speed by online high-speed photography. Opt Lasers Eng 46:705–710. doi: 10.1016/j.optlaseng.2008.05.010 CrossRefGoogle Scholar
  9. 9.
    Migliore L, Kardos G, Ozkan A, Derkach O, Schaeffer R, Dunsky C (2004) Laser choices for micromachining: drilling speed andquality comparison. In Proceedings of the 23th International Congress of Lasers and Electro-Optics (ICALEO), San FranciscoGoogle Scholar
  10. 10.
    Durr U (2008) Laser drilling in industrial use. Laser Tech J 5(1):57–59. doi: 10.1002/latj.200890029 CrossRefGoogle Scholar
  11. 11.
    Yeo CY, Tam SC, Jana S, Lau MWS (1994) A technical review of the laser drilling of aerospace materials. J Mater Process Technol 42:15–49. doi: 10.1016/0924-0136(94)90073-6 CrossRefGoogle Scholar
  12. 12.
    Yilbas BS (1997) Parametric study to improve laser hole drilling process. J Mater Process Technol 70:264–273. doi: 10.1016/S0924-0136(97)00076-9 CrossRefGoogle Scholar
  13. 13.
    Handbook TRUMPF (2008) The laser as a tool-Chapter 4: a world of possibilities—the processes. TRUMPF, Farmington, CTGoogle Scholar
  14. 14.
    Wiesemann W (2004) Process monitoring and closed loop control. In: Poprawe R, Weber H, Herziger G (eds) Laser applications. Springer, BerlinGoogle Scholar
  15. 15.
    Stournaras A, Stavropoulos P, Salonitis K, Chryssolouris G (2008) Laser process monitoring: A critical review, In: Cheng K, Makatsori H, Harrison D (eds) Advances in Manufacturing Technology-XXII, Proceedings of the 6th International Conference on Manufacturing Research (ICMR2008), Brunel University, UK, 9th–11th September 2008, pp 225-235Google Scholar
  16. 16.
    Hand DP, Peters C, Haran F, Jones JDC (1997) A fibre-optic-based sensor for optimization and evaluation of the laser percussion drilling process. Meas Sci Technol 8:587–592. doi: 10.1088/0957-0233/8/6/001 CrossRefGoogle Scholar
  17. 17.
    Pandey ND, Shan HS, Barti A (2006) Percussion drilling with laser: hole completion criterion. Int J Adv Manuf Technol 28:863–868. doi: 10.1007/s00170-004-2442-7 CrossRefGoogle Scholar
  18. 18.
    Keuster JD, Duflou JR, Kruth J-P (2007) Monitoring of high-power CO2 laser cutting by means of an acoustic microphone and photodiodes. Int J Adv Manuf Technol 5:115–126. doi: 10.1007/s00170-006-0695-z CrossRefGoogle Scholar
  19. 19.
    Su D, Norris I, Peters C, Hall DR, Jones JDC (1993) In-situ laser material process monitoring using cladding power detection technique. Opt Lasers Eng 18:371–376. doi: 10.1016/0143-8166(93)90045-M CrossRefGoogle Scholar
  20. 20.
    Low DKY, Li L, Byrd PJ (2000) The effects of process parameters on spatter deposition in Laser percussion drilling. Opt Laser Technol 32:347–354. doi: 10.1016/S0030-3992(00)00079-7 CrossRefGoogle Scholar
  21. 21.
    Low DKY, Li L, Corfe A (2001) Characteristics of spatter formation under the effects of different laser parameters during laser drilling. J Mater Process Technol 118:179–186. doi: 10.1016/S0924-0136(01)00910-4 CrossRefGoogle Scholar
  22. 22.
    Low DKY, Li L, Corfe AG, Byrd PJ (2001) Spatter-free Laser percusion drilling of closely space array holes. Int J Mach Tools Manuf 41:361–377. doi: 10.1016/S0890-6955(00)00078-X CrossRefGoogle Scholar
  23. 23.
    Low DKY, Li L, Byrd PJ (2001) The influence of temporal pulse train modulation during laser percussion drilling. Opt Lasers Eng 35:149–164. doi: 10.1016/S0143-8166(01)00008-2 CrossRefGoogle Scholar
  24. 24.
    Zeng X, Mao SS, Liu C, Mao X, Greif R, Russo R (2003) Plasma diagnostics during laser ablation in cavity. Spectrochim Acta B Atom Spectrosc 58:867–877. doi: 10.1016/S0584-8547(03)00021-1 CrossRefGoogle Scholar
  25. 25.
    French PW, Hand DP, Peters C, Shannon GJ, Byrd P, Steen WM (1998) Investigation of the Nd:YAG laser percussion drilling process using high speed filming, In Proceedings of the 17th International Congress on Applications of Lasers and Electo-Optics (ICALEO). Orlando, Florida (USA), November 16–19Google Scholar
  26. 26.
    Tonshoff HK, Ostendorf A, Korber K, Hillers O (2001) Principles of reference-free process monitoring for laser material processing based on a multiple sensor system, In Proceedings of the 20th International Congress of Lasers and Electro-Optics (ICALEO), Jacksonville, Florida, (USA), October, 15–18Google Scholar
  27. 27.
    Grigoryants A (1994) Basics of laser material processing. Mir, MoscowGoogle Scholar
  28. 28.
    Frey HC, Patil S (2001) Identification and review of sensitivity analysis methods. In: Proceedings of NCSU/USDA Workshop on Sensitivity Analysis, June 11–12, North Carolina State UniversityGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • Aristidis Stournaras
    • 1
  • Konstantinos Salonitis
    • 1
  • George Chryssolouris
    • 1
  1. 1.Laboratory for Manufacturing Systems & Automation, Department of Mechanical Engineering & AeronauticsUniversity of PatrasPatrasGreece

Personalised recommendations