Deposition and focused ion beam milling of anticorrosive CrC coatings on tool steel substrates

  • R. MinevEmail author
  • M. Ilieva
  • J. Kettle
  • G. Lalev
  • S. Dimov
  • D. Tzaneva
  • I. Dermendjiev
  • R. Shishkov


For micro replication, the base of a die should be ductile and the surface layer that will undergo processing should have a good machining response to various tool-making processes. At the same time, the resulting working surfaces of the tooling cavities should be hard; having low roughness, low wettability and high erosion resistance. To achieve such diverse properties, nano-crystalline CrC coatings deposited onto 12% Cr tool steel were investigated in this research. To verify the properties of such coatings various metallographic techniques were applied. In particular, the corrosion resistance was studied by means of potentiodynamic anodic polarisation. A scanning transmission electron microscopy analysis of the structure was performed on samples prepared with focused ion beam (FIB) machining. The mechanical properties and grain size distribution were determined and statistically analysed. In addition, X-ray diffraction, scanning electron microscopy and atomic force microscopy were used in studying the surface properties of these coatings. To investigate the response of the CrC coatings to micro- and nano-structuring technologies with high specific energy, a series of rectangular trenches were produced by FIB milling. The effects of the ion beam current, exposure time and ion fluence on the sputtering yield and roughness of the produced micro-structures were especially investigated. Some essential parameter windows for performing FIB milling with relatively high sputtering rates, higher than 1 µm/min, and at the same time achieving the best possible surface integrity were determined during the experiments.


CrC PVD FIB Micro-tooling AFM STEM analyses 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shishkov R et al (2004) Journal of Material Processing and Technology 157 - 158:410–414CrossRefGoogle Scholar
  2. 2.
    Shishkov R, Lisichkova E (1995) A general model for vacuum condensates and vacuum diffusive coatings. Vacuum 46(11):1337–1346. doi: 10.1016/0042-207X(95)00026-7 CrossRefGoogle Scholar
  3. 3.
    Restrepo E et al (2004) Braz J Phys 34(no.4B):1748–1751. doi: 10.1590/S0103-97332004000800043 CrossRefGoogle Scholar
  4. 4.
    Lamastra FR et al (2006) Surf Coat Tech 200:6172–6175. doi: 10.1016/j.surfcoat.2005.11.013 CrossRefGoogle Scholar
  5. 5.
    Gomez MA et al (2005) Surf Coat Tech 200:1819–1824. doi: 10.1016/j.surfcoat.2005.08.060 CrossRefGoogle Scholar
  6. 6.
    Li G et al (2005) Tsinghua Sci Technol 10(6):690–698. doi: 10.1016/S1007-0214(05)70137-1 CrossRefGoogle Scholar
  7. 7.
    Barshilia HC, et al (2004) v. 72:241-248Google Scholar
  8. 8.
    Yang O et al (2004) Surf Coat Tech 177–178:204–208. doi: 10.1016/j.surfcoat.2003.09.033 CrossRefGoogle Scholar
  9. 9.
    Braic M et al (2003) J Optoelectronics Adv Mater 5:1399–1404Google Scholar
  10. 10.
    Mendibide C et al (2006) Surf Coat Tech 201:4119–4124. doi: 10.1016/j.surfcoat.2006.08.013 CrossRefGoogle Scholar
  11. 11.
    Suresha SJ et al (2006) Mater Sci Eng A 429:252–260. doi: 10.1016/j.msea.2006.05.068 CrossRefGoogle Scholar
  12. 12.
    Gorokhovsky V et al (2006) Surf Coat Tech 201:3732–3747. doi: 10.1016/j.surfcoat.2006.09.007 CrossRefGoogle Scholar
  13. 13.
    Kayani A et al (2006) Surf Coat Tech 201:4460–4466. doi: 10.1016/jsurfcoat.2006.08.049 Google Scholar
  14. 14.
    Ducros C, et al (2005) 4 M Conference, Karlsruhe. pp. 177-180Google Scholar
  15. 15.
    Ochiai C et al (2001) High resolution organic resists for charged particle lithography. J Vac Sci Technol B 19:933. doi: 10.1116/1.1349205 CrossRefGoogle Scholar
  16. 16.
    Loeschner H et al (2002) Large-field ion optics for projection and proximity printing and for maskless lithography (ML2). Proc SPIE 4688:595–606. doi: 10.1117/12.472336 CrossRefGoogle Scholar
  17. 17.
    Lalev G et al (2008) Data preparation for FIB machining of complex 3D structures. Proc. IMechE. Part B 222(1):67–76CrossRefGoogle Scholar
  18. 18.
    Gomez MA et al (2005) Surf. & Coat. Tech. 200(5-6):1819–1824CrossRefGoogle Scholar
  19. 19.
    Li W. et al (2007) Patterning of amorphous and polycrystalline Ni78B14Si8 with a focused ion beam. Appl Surf Sci, issue 12:5404-5410, 15 AprilGoogle Scholar
  20. 20.
    Popov K et al (2006) Micromilling: material microstructure effects. IMechE Part B 220(11):1807–1813CrossRefGoogle Scholar
  21. 21.
    Platzgummer E et al (2006) Simulation of ion beam direct structuring for 3D nanoimprint template fabrication. Microelectron. Eng. 83:936–939. doi: 10.1016/j.mee.2006.01.140 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • R. Minev
    • 1
    • 2
    Email author
  • M. Ilieva
    • 2
  • J. Kettle
    • 1
  • G. Lalev
    • 1
  • S. Dimov
    • 1
  • D. Tzaneva
    • 2
  • I. Dermendjiev
    • 2
  • R. Shishkov
    • 2
  1. 1.Manufacturing Engineering CenterCardiff UniversityCardiffUK
  2. 2.Department of Materials Science and TechnologyRousse UniversityRousseBulgaria

Personalised recommendations