Process capabilities of Micro-EDM and its applications

  • Kun LiuEmail author
  • Bert Lauwers
  • Dominiek Reynaerts


The micro-electrical discharge machining (micro-EDM) process has proved to be an appropriate nonconventional machining method for manufacturing accurate and complex three-dimensional structural micro-features which are difficult to be produced by conventional processes. However, the miniaturisation of the EDM process requests special requirements on the machining equipment. Pulse generators which can produce small input energy pulses and high precision systems are the two major requirements. In this paper, newly developed technologies regarding these aspects are explored with the aid of a commercial micro-EDM machine. By examining the pulses, innovative strategies implemented in the pulse generator are studied. Pulse measurements reveal the correlation between the discharge pulses and the machine parameters in order to provide an overview of process capability. Conclusions are applied on machining of a ceramic composite Si3N4-TiN and optimised machining settings for different machining conditions are achieved. Accordingly, applications of two- and three-dimensional micro-structures on different types of materials such as a stainless steel micro-compressor and a ceramic miniature gas turbine are demonstrated. By inspecting the machining geometry and surface integrity, process characteristics of micro-EDM are discussed.


Micro-EDM Ceramic composite 3D EDM milling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kunieda M, Lauwers B, Rajurkar K, Schumacher BM (2005) Advancing EDM through fundamental insight into the process. CIRP Ann 54(2):599–622. doi: 10.1016/S0007-8506(07)60020-1 CrossRefGoogle Scholar
  2. 2.
    Ho KH, Newman ST (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43:1287–1300. doi: 10.1016/S0890-6955(03)00162-7 CrossRefGoogle Scholar
  3. 3.
    Rajurkar KP, Levy G, Malshe A, Sundaram MM, McGeough J, Hu X, Resnick T, DeSilva A (2006) Micro and nano machining by electrophysical and chemical processes. CIRP Ann 55(2):643–666. doi: 10.1016/j.cirp. 2006.10.002 CrossRefGoogle Scholar
  4. 4.
    Song X, Meeusen W, Reynaerts D, Van Brussel H (2000) Experimental study of micro-EDM machining performances on silicon wafer. Proceedings of SPIE’s 2000 Symposium on Micromachining and Microfabrication, Santa Clara, USA, pp 331-339Google Scholar
  5. 5.
    Muttamara A, Fukuzawa Y, Mohri N, Tani Y (2003) Probability of precision micro-machining of insulating Si3N4 ceramics by EDM. J Mater Process Technol 140:243–247. doi: 10.1016/S0924-0136(03)00745-3 CrossRefGoogle Scholar
  6. 6.
    Lauwers B, Kruth JP, Liu W, Schacht B, Bleys P (2004) Investigation of the material removal mechanisms in EDM of composite ceramic materials. J Mater Process Technol 149:347–352. doi: 10.1016/j.jmatprotec.2004.02.013 CrossRefGoogle Scholar
  7. 7.
    Pham DT, Dimov SS, Bigot S, Ivanov A, Popov K (2004) Micro-EDM–recent developments and research issues. J Mater Process Technol 149:50–57. doi: 10.1016/j.jmatprotec.2004.02.008 CrossRefGoogle Scholar
  8. 8.
    Fleischer J, Masuzawa T, Schmidt J, Knoll M (2004) New applications for micro-EDM. J Mater Process Technol 149:246–249. doi: 10.1016/j.jmatprotec.2004.02.012 CrossRefGoogle Scholar
  9. 9.
    Reynaerts D, Van Brussel H, Meeusen W, Driesen W, Dierickx V (2001) Micro-Electro Discharge Machining: review and application. Proactive Strategies of Efficient Production Technology, pp 107-122Google Scholar
  10. 10.
    Masuzawa T, Fujino M, Kobayashi K, Suzuki T, Kinoshita N (1985) Wire electro-discharge grinding for micro-machining. CIRP Ann 34(1):431–434. doi: 10.1016/S0007-8506(07)61805-8 CrossRefGoogle Scholar
  11. 11.
    Reynaerts D, Meeusen W, Van Brussel H (1998) Machining of three-dimensional microstructures in silicon by electro-discharge machining. Sens Actuators A Phys 67:159–165. doi: 10.1016/S0924-4247(97)01724-X CrossRefGoogle Scholar
  12. 12.
    Masuzawa T (2001) Micro-EDM. Proceedings of 13th International Symposium on Electromachining (ISEM XIII). Bilbao, Spain, pp 3–19Google Scholar
  13. 13.
    Bleys P, Kruth JP, Lauwers B, Zryd A, Delpretti R, Tricarico C (2002) Real-time tool wear compensation in Milling EDM. CIRP Ann 51(1):157–160. doi: 10.1016/S0007-8506(07)61489-9 CrossRefGoogle Scholar
  14. 14.
    Han F, Wachi S, Kunieda M (2004) Improvement of machining characteristics of micro-EDM using transistor type isopulse generator and servo feed control. Precis Eng 28:378–385. doi: 10.1016/j.precisioneng.2003.11.005 CrossRefGoogle Scholar
  15. 15.
    Liu K, Ferraris E, Peirs J, Lauwers B, Reynaerts D (2008) Micro-EDM process investigation of Si3N4-TiN ceramic composites for the development of micro fuel-based power units. Int J Manuf Res 3:27–47. doi: 10.1504/IJMR.2008.016451 CrossRefGoogle Scholar
  16. 16.
    Liao YS, Chen ST, Lin CS (2005) Development of a high precision tabletop versatile CNC wire-EDM for making intricate micro parts. J Micromech Microeng 15:245–253. doi: 10.1088/0960-1317/15/2/001 CrossRefGoogle Scholar
  17. 17.
    Peirs J et al (2007) Micropower generation with microgasturbines: a challenge. Proc IMechE, Part C. J Mech Eng Sci 221:489–500Google Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  1. 1.Division PMA, Department of Mechanical EngineeringKatholieke Universiteit LeuvenHeverlee (Leuven)Belgium

Personalised recommendations