Advertisement

Investigation of polymer inserts as prototyping tooling for micro injection moulding

  • C. A. Griffiths
  • S. BigotEmail author
  • E. Brousseau
  • M. Worgull
  • M. Heckele
  • J. Nestler
  • J. Auerswald
SPECIAL ISSUE - ORIGINAL ARTICLE

Abstract

An increasing number of microfluidic applications linked with a strong demand for low-cost solutions has pushed research activities towards the development of polymer-based microfluidic systems. This requires the use of micro injection moulding technology to accurately replicate polymer micro parts; however, the tooling cost associated with this manufacturing route remains relatively high. The purpose of this paper is to investigate the feasibility of utilising polymer inserts for prototype tooling in micro injection moulding that can reduce product development time and cost associated with the design and testing of microfluidic systems prior to mass fabrication.

Keywords

Micro injection moulding Hot embossing Prototyping Polymer tool Polymer insert Microfluidic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ottino JM, Wiggins S (2004) Introduction: mixing in microfluidics. Phil Trans Royal Soc A 362(1818):923–935zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Whitesides GM (2006) The origins and the future of microfluidics. Lab on chip nature insight. Nature 422(7101):368–373CrossRefGoogle Scholar
  3. 3.
    Nestler J et al (2006) A new technology platform for fully integrated polymer based micro optical fluidic systems. Proceedings of the 2nd International Conference on Multi-Material Micro Manufacture, Grenoble, France, pp 35–38Google Scholar
  4. 4.
    Wong JY et al (1994) Electrically conducting polymers can noninvasively control the shape and growth of mammalian cells. Proc Natl Acad Sci USA 91(8):3201–3204. doi: 10.1073/pnas.91.8.3201 CrossRefGoogle Scholar
  5. 5.
    Masuzawa T (2000) State of the art of micromachining. CIRP Ann 49:473–488CrossRefGoogle Scholar
  6. 6.
    Friedrich CR, Coane PJ, Vasile MJ (1997) Micromilling development and applications for microfabrication. Microelectron Eng 35(1):367–372. doi: 10.1016/S0167-9317(96)00198-0 CrossRefGoogle Scholar
  7. 7.
    Nistler V (2002) Routing polycarbonate material. In: The IAPD Magazine. Available via http://www.theiapdmagazine.com/pdf/magazine-archives/33.pdf. Accessed 15 Jun 2008
  8. 8.
    Samuel J, DeVor RD, Kapoor SG, Hsia KJ (2006) Experimental investigation of the machinability of polycarbonate reinforced with multiwalled carbon nanotubes. Manuf Sci Eng 128(2):465–473. doi: 10.1115/1.2137753 CrossRefGoogle Scholar
  9. 9.
    Dhokia VG, Kumar S, Vichare P, Newman ST, Allen RD (2008) Surface roughness prediction model for CNC machining of polypropylene. Proc IMech E Part B J Eng Manuf 222(2):137–157CrossRefGoogle Scholar
  10. 10.
    Kemmann O, Weber L (2001) Simulation of the micro injection molding process. Specialised molding techniques. Heim H-P, Potente H (ed). William Andrew IncGoogle Scholar
  11. 11.
    Piotter V, Mueller K, Plewa K, Ruprecht R, Hausselt J (2002) Performance and simulation of thermoplastic micro injection molding. Microsyst Technol 8(6):387–390. doi: 10.1007/s00542-002-0178-6 CrossRefGoogle Scholar
  12. 12.
    Yao D, Kim B (2004) Scaling issues in miniaturization of injection molded parts. Manuf Sci Eng 126:733–739. doi: 10.1115/1.1813479 CrossRefGoogle Scholar
  13. 13.
    Kukla C, Loibl H, Detter H, Hannenheim W (1998) Micro injection moulding—the aims of a project partnership, Kunstoffe Plast. Europe, 6Google Scholar
  14. 14.
    Steger R, Bohl B, Neurath A, Messner S, Sandmaier H, Zengerle R, Koltay PA (2004) Highly parallel nanoliter dispensing system fabricated by high speed micromilling. Actuator, 9th International Conference on New Actuators, Bremen, Germany, 545–548Google Scholar
  15. 15.
    Davim JP, Reis P, Lapa V, Antonio CC (2003) Machinability study on polyetheretherketone (PEEK) unreinforced and reinforced (GF30) for applications in structural components. Compos Struct 62:67–73. doi: 10.1016/S0263-8223(03)00085-0 CrossRefGoogle Scholar
  16. 16.
    Jensen M, McCormack J, Helbo B, Christensen L, Christensena T, Geschkeb O (2004) Rapid prototyping of polymer microsystems via excimer laser ablation of polymeric moulds. Lab Chip 4:391–395. doi: 10.1039/b403037k CrossRefGoogle Scholar
  17. 17.
    Leu TS, Chang PY (2004) Pressure barrier of capillary stop valves in micro sample separators. Sensors Actutators A 115:508–515. doi: 10.1016/j.sna.2004.02.036 CrossRefGoogle Scholar
  18. 18.
    Becker EW, Ehrfeld W, Hagmann P, Maner A, Münchmeyer D (1986) Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process). Microelectron Eng 4:35–56. doi: 10.1016/0167-9317(86)90004-3 CrossRefGoogle Scholar
  19. 19.
    Khan Malek C et al (2005) Double hot-embossing with polymeric intermediate mould. Proceedings of the 1st International Conference on Multi-Material Micro Manufacture, Karlsruhe, Germany, 71–74Google Scholar
  20. 20.
    Worgull M, Heckele M, Schomburg WK (2003) Analysis of the micro hot embossing process. Forschungszentrum Karlsruhe, FZKA-Bericht 6922Google Scholar
  21. 21.
    Worgull M (2003) Analysis of the hot embossing process. PhD Thesis, University of KarlsruheGoogle Scholar
  22. 22.
    Wimberger-Friedl R (ed) (2001) Injection molding of sub-µm grating optical elements. William Andrew, NYGoogle Scholar
  23. 23.
    Chang C, Chen RY, Su CH (1996) Modifying the Tait equation with cooling-rate effects to predict the pressure-volume-temperature behaviors of amorphous polymers: modeling and experiments. Polym Eng Sci (USA) 36:1789–1795CrossRefGoogle Scholar
  24. 24.
    Hansen HN, Theilade UA (2005) Surface microstructure replication in injection moulding. Proceedings of the 1st International Conference on Multi-Material Micro Manufacture, Karlsruhe, Germany, 91–94Google Scholar
  25. 25.
    Cosma L (2001) Thin wall processing of engineering resins. Specialised Molding Techniques Book, Chapter 2 Thin Wall Moulding, p 91Google Scholar
  26. 26.
    Sha B, Dimov S, Griffiths C, Packianather MS (2007) Micro-injection moulding: factors affecting the achievable aspect ratios. Int J Adv Manuf Technol 33(1):147–156. doi: 10.1007/s00170-006-0579-2 CrossRefGoogle Scholar
  27. 27.
    Phadke MS (1989) Quality engineering using robust design. Prentice-Hall InternationalGoogle Scholar
  28. 28.
    Rhee HG, Vorburger TV, Lee JW, Fu J (2005) Discrepancies between roughness measurements obtained with phase-shifting and white-light interferometry. Appl Opt 44(28):5919–5927. doi: 10.1364/AO.44.005919 CrossRefGoogle Scholar
  29. 29.
    Ferri C, Brousseau E, Dimov S, Mattsson L (2006) Repeatability analysis of two methods for height measurements in the micrometer range. Second International Conference on Multi-Material Micro Manufacture, 4M2006, Grenoble, France, 165–168Google Scholar
  30. 30.
    BS 6393-1987, ISO 5436-1985 (1987) British Standard Specification for calibration of stylus instruments. ISO title: Calibration specimens–Stylus instruments—Types, calibration and use of specimens. BSI—British Standards InstitutionGoogle Scholar
  31. 31.
    Billmeyer FW (1971) Textbook of polymer science, 2nd edn. Wiley-interscience, p 351Google Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • C. A. Griffiths
    • 1
  • S. Bigot
    • 1
    Email author
  • E. Brousseau
    • 1
  • M. Worgull
    • 2
  • M. Heckele
    • 2
  • J. Nestler
    • 3
  • J. Auerswald
    • 4
  1. 1.Manufacturing Engineering CentreCardiff UniversityCardiffUK
  2. 2.Institut fuer MikrostrukturtechnikKarlsruheGermany
  3. 3.Chemnitz University of TechnologyChemnitzGermany
  4. 4.CSEM Centre Suisse d’Electronique et de Microtechnique SAAlpnachSwitzerland

Personalised recommendations