Advertisement

The influence of heat treatment and hot deformation conditions on γ′ precipitate dissolution of Nimonic 115 superalloy

  • D. Shahriari
  • M. H. Sadeghi
  • A. Akbarzadeh
  • M. Cheraghzadeh
ORIGINAL ARTICLE

Abstract

In precipitation hardenable materials, it is desirable to determine the precipitate dissolution temperature for homogenizing the microstructure by controlling the size and distribution of the precipitates. In this research, the influence of various heat treatment and hot deformation conditions on the kinetics of γ′ dissolution and its morphological evolution in Nimonic 115 was studied. In addition, hot deformation behavior of the material was investigated using hot compression experiments at varying temperature (between 1,050°C and 1,175°C) and strain rates (between 0.01 and 1 s−1) up to a true strain of 0.8. The values obtained for the solvus temperature of γ′ precipitates by two methods are all in agreement indicating this temperature at approximately 1,165 ± 5°C. Through examination of the influence of temperature and strain rate on the hot deformation behavior, it was determined that the experimental flow stress observations could be effectively related to the processing parameters using an Arrhenius relationship. The results indicate that dynamic recrystallization is the main softening mechanism during the high temperature deformation of Nimonic 115, and it can be effectively promoted by increasing the deformation temperature. By deformation at temperatures higher than 1,125°C, a completely recrystallized microstructure is obtained.

Keywords

Nimonic 115 Heat treatment Hot deformation γ′ dissolution temperature Morphology Dynamic recrystallization 

References

  1. 1.
    Donachie MJ, Donachie SJ (2002) Superalloys a technical guide. ASM International, Metals Park, OHGoogle Scholar
  2. 2.
    Durand-Charre M (1997) The microstructure of superalloys. Gordon and Breach, SingaporeGoogle Scholar
  3. 3.
    Sims CT, Stoloff NS, Hagel WC (1987) Superalloy II. Wiley, New York, NYGoogle Scholar
  4. 4.
    Daleo JA, Wilson JR (1998) GTD-111 alloy material study. J Eng Gas Turbines Power 120:375–382. doi: 10.1115/1.2818133 CrossRefGoogle Scholar
  5. 5.
    Park NK, Kim IS, Na YS (2001) Hot forging of a nickel-base superalloy. J Mater Process Technol 111:98–102. doi: 10.1016/S0924-0136(01)00489-7 CrossRefGoogle Scholar
  6. 6.
    Shen G, Furrer D (2000) Manufacturing of aerospace forging. J Mater Process Technol 98:189–195. doi: 10.1016/S0924-0136(99)00198-3 CrossRefGoogle Scholar
  7. 7.
    Dieter GE (1984) Workability testing techniques. American Society for Metals, Metals Park, OHGoogle Scholar
  8. 8.
    Siddall RJ, Eggar JW (1986) Production and quality control of superalloy forging-quality billet. Mater Sci Technol 2:728–732Google Scholar
  9. 9.
    Sajjadi SA, Zebarjad SM, Guthrie RILM, Isac M (2006) Microstructure evolution of high-performance Ni-base superalloy GTD-111 with heat treatment parameters. J Mater Process Technol 175:376–381. doi: 10.1016/j.jmatprotec.2005.04.021 CrossRefGoogle Scholar
  10. 10.
    Sharghi-Moshtaghin R, Asgari S (2004) The effect of thermal exposure on the γ′characteristics in a Ni-base superalloy. J Alloy Comp 368:144–151. doi: 10.1016/S0925-8388(03)00699-6 CrossRefGoogle Scholar
  11. 11.
    Safari J, Nategh S (2006) On the heat treatment of Rene-80 nickel-base superalloy. J Mater Process Technol 176:240–250. doi: 10.1016/j.jmatprotec.2006.03.165 CrossRefGoogle Scholar
  12. 12.
    Furrer DU, Fecht HJ (1999) γ′ Formation in superalloy U720LI. Scr Mater 40(11):1215–1220. doi: 10.1016/S1359-6462(99)00094-9 CrossRefGoogle Scholar
  13. 13.
    Behrouzghaemi S, Mitchell R (2008) Morphological changes of γ′ precipitates in superalloy IN738LC at various cooling rates. Mater Sci Eng A 498:266–271. doi: 10.1016/j.msea.2008.07.069 CrossRefGoogle Scholar
  14. 14.
    Huda Z, Ralph B (1990) Mechanism of grain growth and intergranular precipitation of γ′ in a nickel base superalloy. Prac Metallography 27(2):64–74Google Scholar
  15. 15.
    Steven RA, Flewitt PEJ (1978) Microstructural changes which occur during isochronal heat treatment of the Ni-base superalloy IN-738. J Mater Sic 13:367–376. doi: 10.1007/BF00647782 CrossRefGoogle Scholar
  16. 16.
    Yeom SJ, Yoon DY, Henry MF (1993) The morphological changes of γ′ precipitates in a Ni-8Al alloy during their coarsening. Metall Trans A 24A:1975–1981Google Scholar
  17. 17.
    McColvin GM (1977) The effects of thermal treatments on the γ′ precipitate morphology and creep rupture properties of Nimocast alloy738. Metal Sci 11:447–452Google Scholar
  18. 18.
    Doi M, Miyazaki T (1992) Effect of elastic interaction energy on the distribution of coherent precipitate particles in Ni-base alloys. In: Antolovich SD, Kissinger RD, Klarstorm DL (eds) Proc Superalloys 92. The Minerals, Metals & Materials Society, Warrendale, PA, pp 537–546Google Scholar
  19. 19.
    Porter DA, Easterling KE (1981) Phase transitions in metals and alloys. Chapman and Hall, LondonGoogle Scholar
  20. 20.
    Goetz RL, Semiatin SL (2001) The adiabatic correction factor for deformation heating during the uniaxial compression test. J Mater Eng Perform 10:710–717. doi: 10.1361/105994901770344593 CrossRefGoogle Scholar
  21. 21.
    Sellars CM, Tegart WJ (1966) La relation entre le resistance et la structure dans la deformation a chud. Membr Sci Rev Metab 63:731–746Google Scholar
  22. 22.
    Zhou LX, Baker TN (1994) Effects of strain rate and temperature on deformation behaviour of IN 718 during high temperature deformation. Mater Sci Eng A 177(1/2):1–9. doi: 10.1016/0921-5093(94)90472-3 Google Scholar
  23. 23.
    Medeiros SC, Frazier WG, Prasad YVRK (2000) Hot deformation mechanisms in a powder metallurgy nickel-base superalloy IN 625. Metall Trans A 31:2317–2325. doi: 10.1007/s11661-000-0147-6 CrossRefGoogle Scholar
  24. 24.
    Medeiros SC, Prasad YVRK, Frazier WG, Srinivasan R (2000) Microstructural modeling of metadynamic recrystallization in hot working of IN 718 superalloy. Mater Sci Eng A 293:198–207. doi: 10.1016/S0921-5093(00)01053-4 CrossRefGoogle Scholar
  25. 25.
    Medeiros SC, Prasad YVRK, Frazier WG, Srinivasan R (2000) Modeling grain size during hot deformation of IN 718. Scr Mater 42:17–23. doi: 10.1016/S1359-6462(99)00316-4 CrossRefGoogle Scholar
  26. 26.
    Mashreghi AR, Monajatizadeh H, Jahazi M, Yue S (2004) High temperature deformation of nickel base superalloy Udimet 520. Mater Sci Technol 20:161–166. doi: 10.1179/026708304225010343 CrossRefGoogle Scholar
  27. 27.
    Monajati H, Jahazi M, Yue S, Taheri AK (2005) Deformation characteristics of isothermally forged UDIMET 720 nickel-base superalloy. Metall Trans A 36:895–905. doi: 10.1007/s11661-005-0284-z CrossRefGoogle Scholar
  28. 28.
    Thomas A, El-Wahabi M, Cabrera JM, Prado JM (2006) High temperature deformation of Inconel 718. J Mater Process Technol 177:469–472. doi: 10.1016/j.jmatprotec.2006.04.072 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  1. 1.Manufacturing Group, Department of Mechanical Engineering, Faculty of EngineeringTarbiat Modares UniversityTehranIran
  2. 2.Department of Materials Science and EngineeringSharif University of TechnologyTehranIran
  3. 3.Mapna Group (MavadKaran Eng. Co.)TehranIran

Personalised recommendations