A linear piezo-electric ultrasonic motor using a single flexural vibrating bar for electro-discharge system industrial applications

  • M. Shafik
  • E. M. ShehabEmail author
  • H. S. Abdalla


This paper provides the development process of a linear piezo-electric ultrasonic motor using a single flexural vibrating bar. The process covers the design methodology, conceptual design, basic configuration, modelling and analysis, principle of operation, motor structure, experimental examination and evaluation of the main characteristics of the motor. The motor comprises three main parts: the stator, rotor and sliding element. The mechanism concept of the developed motor is based on creating elliptical motions of surface points generated by superposition of longitudinal and bending vibration modes of oscillating structures. Pressing the stator against the driving tip, the microscopic motions are transferred into a rotary motion then into linear motion through the friction between parts of the motor. The developed motor provides a linear motion and can be driven with common droving system with electrical signal of invariable frequency. Modelling using finite element analysis, mechanism and design of the component of the developed prototype are presented in this paper. The essential experimental test to implement the motor in electro-discharge system industrial application was carried out, and the initial results show that the developed prototype is able to provide a reversible directional of motion, no-load travelling speed equal to 28 mm/s, maximum load of 0.78 N, a resolution <50 μm and a dynamic response <10 ms.


Linear piezo-motor Mode-coupled vibration piezo-motor Piezo-motor industrial application Electro-discharge machining systems using piezo-motor 


  1. 1.
    Furutani K and Furuta, A (2008) Evaluation of driving performance of piezoelectric actuator with current pulse. 10th IEEE International Workshop on Advanced Motion Control, 26–28 March, 387–392Google Scholar
  2. 2.
    Zhang F, Chen W, Lin J, Wang Z (2005) Bidirectional linear ultrasonic motor using longitudinal vibrating transducers. IEEE Trans Ultrason Ferroelectr Freq Control 52(1):134–138. doi: 10.1109/TUFFC.2005.1397358 CrossRefGoogle Scholar
  3. 3.
    Chen Y, Lu K, Zhou TY, Liu T, Lu C (2006) Y. Study of a mini-ultrasonic motor with square metal bar and piezoelectric plate hybrid. Jpn J Appl Phys 45(5B):4780–4781CrossRefGoogle Scholar
  4. 4.
    Li X, Chen WS, Tang X, Liu JK (2007) Novel high torque bearingless two-sided rotary ultrasonic motor. Journal of Zhejiang University—Science A 8(5):786–792CrossRefGoogle Scholar
  5. 5.
    Frangi A, Corigliano A, Binci M, Faure P (2005) Finite element modelling of a rotating piezoelectric ultrasonic motor. Ultrasonics 43(9):747–755. doi: 10.1016/j.ultras.2005.04.005 CrossRefGoogle Scholar
  6. 6.
    Aoyagi M, Tomikawa Y, Takano T (1992) Ultrasonic motors using longitudinal and bending multimode vibrators with mode coupling by external additional asymmetry or internal nonlinearty. Jpn J Appl Phys Part 1 31(9B):3077–3080CrossRefGoogle Scholar
  7. 7.
    Aoyagi M, Tomikawa Y (1996) Ultrasonic motor based on coupled longitudinal-bending vibrators of a diagonally symmetry piezoceramic plate. Electron Commun Jpn 79(6):60–67. doi: 10.1002/ecjc.4430790606 CrossRefGoogle Scholar
  8. 8.
    Chiharu K et al (1998) Effect of the pressing force applied to a rotor on Disk type ultrasonic motor driven by self oscillation. Jpn J Appl Phys 37:2966–2969. doi: 10.1143/JJAP.37.2966 CrossRefGoogle Scholar
  9. 9.
    Shafik M, Knight J (2002) An investigation into electro discharge machining system applications using ultrasonic motor. Proceeding of IMC International Conference, 28–31 August, Queens BelfastGoogle Scholar
  10. 10.
    Shafik M, Knight J, Abdalla H 2001. “Development of a new generation of electrical discharge texturing system using an ultrasonic motor”, 13th International Symposium for Electromachining, ISEM, 9–11 May 2001, SpainGoogle Scholar
  11. 11.
    Muralt P (1999) Ultrasonic micro motors based on PZT thin films. J Electroceram 3(2):143–150. doi: 10.1023/A:1009943110147 CrossRefGoogle Scholar
  12. 12.
    Ming Y, Que PW (2001) Performance estimation of a rotary traveling wave ultrasonic motor based on two-dimension analytical model. Ultrasonics 39(2):115–120. doi: 10.1016/S0041-624X(00)00053-6 CrossRefGoogle Scholar
  13. 13.
    Lebrun L et al (1999) A Low-cost piezoelectric motor using a (1, 1) nonaxisymmetric Mode. Smart Mater Struct 8(4):469–475. doi: 10.1088/0964-1726/8/4/304 CrossRefMathSciNetGoogle Scholar
  14. 14.
    Nagai T, Konno M (1974) Electromechanical vibrators and their application as electronic devices. Corona Co, Ltd, TokyoGoogle Scholar
  15. 15.
    Takano T, Tomikawa Y, Takano CK (1999) Operating characteristics of a same-phase drive-type ultrasonic motor using a flexural disk vibrator. Jpn J Appl Phys Part 1 38(5B):3322–3326CrossRefGoogle Scholar
  16. 16.
    He S, Chen W, Tao X, Chen Z (1998) Standing wave bi-directional linearly moving ultrasonic motor. IEEE Trans Ultrason Ferroelectr Freq Control 45(5):1133–1139. doi: 10.1109/58.726435 CrossRefGoogle Scholar
  17. 17.
    Newton D, Garcia E, Horner GC (1997) A Linear piezoelectric motor. Smart Mater Struct 6:295–304Google Scholar
  18. 18.
    Zhang B, Zhenqi Z (1997) Developing a linear piezomotor with nanometer resolution and high stiffness. IEEE/ASME Trans Mechatron 2(1):22–29. doi: 10.1109/3516.558855 CrossRefGoogle Scholar
  19. 19.
    Tal J (1999) Servomotors take piezoceramic transducers for a ride. Mach Des 71(23):1–3Google Scholar
  20. 20.
    Tobias H, Wallaschek J (2000) Survey of the present state of the art of piezoelectric linear motors. Ultrasonics 38:37–40. doi: 10.1016/S0041-624X(99)00143-2 CrossRefGoogle Scholar
  21. 21.
    Snitka V (2000) Ultrasonic actuators for nanometer positioning. Ultrasonics 38(1–8):20–25CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Shafik M, Knight J (2002) Computer simulation and modelling of an ultrasonic motor using a single flexural vibrating bar. Proceeding of ESM'2002 International Conference 3–5 June GermanyGoogle Scholar
  24. 24.
    Lin MW, Abatan AO, Rogers CA (1994) Application of commercial finite codes for the analysis of induced strain-Actuated structures. J Intell Mater Syst Struct 5(6):869–875. doi: 10.1177/1045389X9400500621 CrossRefGoogle Scholar
  25. 25.
    Hwang WS, Park HC (1993) Finite element modelling piezoelectric sensors and actuators. AIAA J 31(5):930–937. doi: 10.2514/3.11707 CrossRefGoogle Scholar
  26. 26.
    Ueha S, Tomikawa Y (1993) Ultrasonic motors theory and applications. Clarendon Press, Oxford, London, UKGoogle Scholar
  27. 27.
    Ben-Yaakov S, et al (1999) A resonant driver for a piezoelectric motor. Power Conversion and intelligent Motor Conference June, 173–178Google Scholar
  28. 28.
    Shafik M (2003) ‘Computer Aided Analysis and Design of a New Servo Control Feed Drive for EDM using Piezoelectric USM’, PhD Thesis. De Montfort University, Leicester, UKGoogle Scholar
  29. 29.
    McGeough J, Rasmussen H (1992) A model for the surface texturing of steel rolls by electro discharge machining. Proc Math Phys Sci 436:155–164CrossRefGoogle Scholar
  30. 30.
    El-Menshawy F, Ahmed MS (1985) “Monitoring and control of the electrical discharge texturing process for steel cold mill work roll”, Proc. of 13th North American Research Conference 470–475.Google Scholar
  31. 31.
    Simao J, Aspinwall D, El-Menshawy F, Ken Meadows K (2002) Surface alloying using PM composite electrode materials when electrical discharge texturing hardened AISI D2. J Mater Process Technol 127(2):211–216. doi: 10.1016/S0924-0136(02)00144-9 CrossRefGoogle Scholar
  32. 32.
    Simao J, Aspinwall D, El-Menshawy F (1996) “The effect of the EDT process on the surface integrity of cold mill work rolls”, 37TH MWSP Conf. Proc. ISS-AIME, Vol. XXXIII 197–204Google Scholar
  33. 33.
    El-Menshawy F (1990) “Electro-discharge machining apparatus”, United States Patent, Patent No. 4950860Google Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  1. 1.UK Intelligent System Research InstituteMelton MowbrayUK
  2. 2.Decision Engineering CentreCranfield UniversityBedfordUK
  3. 3.Faculty of DesignDe Montfort UniversityLeicesterUK

Personalised recommendations