Advertisement

A 32 × 32 temperature and tactile sensing array using PI-copper films

  • Y.-J. Yang
  • M.-Y. Cheng
  • S.-C. Shih
  • X.-H. Huang
  • C.-M. Tsao
  • F.-Y. Chang
  • K.-C. Fan
SPECIAL ISSUE - ORIGINAL ARTICLE

Abstract

The development of a flexible 32 × 32 temperature and tactile sensing array, which will serve as the artificial skin for robot applications, is presented in this work. Pressure conductive rubber is employed as the tactile sensing material, and discrete temperature sensor chips are employed as the temperature sensing cells. Small disks of pressure conductive rubber are bonded on predefined interdigital copper electrode pairs which are patterned on a flexible copper–polyimide substrate which is fabricated by micromachining techniques. This approach can effectively reduce the crosstalk between each tactile sensing element. The mechanical and electrical properties of tactile sensing elements are measured. Also, the corresponding scanning circuits are designed and implemented. The temperature and tactile sensing elements are heterogeneously integrated on the flexible substrate. By using the integrated 32 × 32 sensing arrays, temperature and tactile images induced by the heaters/stamps of different shapes have been successfully measured. The flexible sensor arrays are bendable down to a 4-mm radius without any degradation in functionality.

Keywords

Artificial skin Flexible electronics Micromachining Tactile sensing array Temperature sensing array 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kane BJ, Cutkosky MR, Kovacs GTA (2000) A traction stress sensor array for use in high-resolution robotic tactile imaging. Journal of Microelectromechanical Systems 9(4):425–433CrossRefGoogle Scholar
  2. 2.
    Wang L, Beebe DJ (2000) A silicon-based shear force sensor: development and characterization. Sens Actuators A 84:33–44CrossRefGoogle Scholar
  3. 3.
    Engel J, Chen J, Liu C (2003) Development of polyimide flexible tactile sensor skin. J Micromech Microeng 13(3):359–366CrossRefGoogle Scholar
  4. 4.
    Jiang F, Tai YC, Walsh K, Tsao T, Lee GB, Ho CM (1997) A flexible MEMS technology and its first application to shear stress sensor skin. Proceedings of IEEE MEMS’97, pp 465–470Google Scholar
  5. 5.
    Hwang ES, Seo JH, Kim YJ (2006) A polymer-based flexible tactile sensor for normal and shear load detection. Proceedings of IEEE MEMS’06, pp 714–717Google Scholar
  6. 6.
    Engel J, Chen J, Fan Z, Liu C (2005) “Polymer micromachined multimodal tactile sensors”. Sens Actuators A 117(1):50–61CrossRefGoogle Scholar
  7. 7.
    Shimojo M, Namiki A, Ishikawa M, Makino R, Mabuchi K (2004) A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method. IEEE J Sens 4(5):589–596CrossRefGoogle Scholar
  8. 8.
    Tajima R, Kagami S, Inaba M, Inoue H (2002) Development of soft and distributed tactile sensors and the application to a humanoid robot. Adv Robot 16(4):381–397CrossRefGoogle Scholar
  9. 9.
    Hasegawa Y, Shikida M,Ogura D, Sato K (2007) Novel type of fabric tactile sensor made from artificial hollow fiber. Proceedings of IEEE MEMS’07, pp 603–606Google Scholar
  10. 10.
    Kim K, Lee KR, Kim YK, Lee DS, Cho NK, Kim WH, Park KB, Park HD, Park YK, Kim JH, Pak JJ (2006) 3-Axes flexible tactile sensor fabricated by si micromachining and packaging technology. Proceedings of IEEE MEMS’06, pp 678–681Google Scholar
  11. 11.
    Lee HK, Chang SI, Yoon E (2006) A flexible polymer tactile sensor: fabrication and modular expandability for large area deployment. Journal of Microelectromechanical Systems 15(6):1681–1686CrossRefGoogle Scholar
  12. 12.
    Castelli F (2002) An integrated tactile-thermal robot sensor with capacitive tactile array. IEEE Trans 38(1):85–90Google Scholar
  13. 13.
    Someya T, Kato Y, Sekitani T, Iba S, Noguchi Y, Murase Y, Kawaguchi H, Sakurai T (2005) Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci USA 102(35):12321–12325CrossRefGoogle Scholar
  14. 14.
    Cheng MY, Chang WY, Tsao LC, Yang SA, Yang YJ, Shih WP, Chang FY, Chang SH, Fan KC (2007) Design and fabrication of an artificial skin using PI-copper films. Proceedings of IEEE MEMS’07, pp 389–392Google Scholar
  15. 15.
    Shamanna V, Das S, Celik-Butler Z, Butler DP, Lawrence KL (2006) Micromachined integrated pressure-thermal sensors on flexible substrates. J Micromech Microeng 16:1984–1992CrossRefGoogle Scholar
  16. 16.
    Datasheet of XSIE101020, Taiflex Scientific Inc. http://www.taiflex.com.tw/english/porducts_2.asp
  17. 17.
    Pugh A (1986) Robot sensors. FS Ltd, New York, pp 87–97Google Scholar
  18. 18.
    Papakostas TV, Lima J, Lowe M (2002) A large area force sensor for smart skin applications. Proc IEEE Sensors 2:1620–1624CrossRefGoogle Scholar
  19. 19.
    Shida K, Yuji JI (1996) Discrimination of material property by pressure-conductive rubber sheet with multi-sensing function. Proceedings of IEEE International Symposium on Industrial Electronics. Warsaw, Poland, pp 54–59Google Scholar
  20. 20.
    Datasheet of pressure-conductive rubber CSA, PCR Technical Inc., http://pcr.lar.jp/e_hint_for_design.pdf
  21. 21.
    Datasheet of electrically conductive adhesive film, 3M Electronics Inc., http://www.mpsupplies.com/3MElectricallyCondutiveTape9703.pdf
  22. 22.
    Chalupa V, Marik V, Volf J (1983) Tactile matrix for shape recognition. Proceedings of the 9th IMEKO Congress of the International Measurement Confederation, vol 1, pp 339–348Google Scholar
  23. 23.
    Kerpa O, Weiss K, Worn H (2003) Development of a flexible tactile sensor system for a humanoid robot. IEEE International Conference on Intelligent Robots and Systems, pp 1–6Google Scholar
  24. 24.
    Freitag R, Meixner H (1988) PVDF sensor array for human body detection. Proceedings of IEEE 6th International Symposium. Oxford, England, pp 374–378Google Scholar
  25. 25.
    Ishikawa M, Shimojo M (1988) An imaging tactile sensor with video output and tactile image processing. The Society of Instrument and Control Engineers, pp 662–669Google Scholar
  26. 26.
    Takahashi Y, Nishiwaki K, Kagami S, Mizoguchi H, Inoue H (2005) High-speed pressure sensor grid for humanoid robot foot. Proceeding of IEEE International Conference on Intelligent Robots and Systems, pp 3909–3914Google Scholar
  27. 27.
    Datasheet of MAX-6607, Maxim Integrated Products Inc., http://datasheets.maxim-ic.com/en/ds/MAX6607-MAX6608.pdf

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • Y.-J. Yang
    • 1
  • M.-Y. Cheng
    • 1
  • S.-C. Shih
    • 1
  • X.-H. Huang
    • 1
  • C.-M. Tsao
    • 1
  • F.-Y. Chang
    • 2
  • K.-C. Fan
    • 1
  1. 1.Department of Mechanical EngineeringNational Taiwan UniversityTaipeiTaiwan
  2. 2.Industrial Technology Research InstituteHsin-ChuTaiwan

Personalised recommendations