Investigation of the effects of main roll-forming process parameters on quality for a V-section profile from AHSS

  • John Paralikas
  • Konstantinos Salonitis
  • George Chryssolouris
ORIGINAL ARTICLE

Abstract

The cold-roll-forming process is one of the main processes for mass production of the profiles with constant cross-section in many industrial sectors. The introduction of advanced high-strength steels (AHSS), such as DP-series and TRIP-series, into the production of roll-formed profiles has brought new challenges. The current paper exploits the finite elements (FE) method and investigates the effects of the main roll-forming process parameters, namely the roll-forming line velocity, rolls inter-distance, rolls gap, and rolls diameter, on quality characteristics. These characteristics are the distribution of longitudinal and transversal strains on final profile, total, and elastic longitudinal strains and longitudinal residual strains at strips edge along the forming direction and dimensional accuracy of the profile after the final roll station.

Keywords

Cold roll forming Modeling AHSS Longitudinal strains Residual strains Dimensional accuracy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chryssolouris G (2005) Manufacturing systems-theory and practice, 2nd edn. SpringerGoogle Scholar
  2. 2.
    Salonitis K, Stavropoulos P, Paralikas J, Chryssolouris G (2007) Modeling of cold roll forming process: a preliminary theoretical investigation, Proceedings of the IFAC Workshop on manufacturing modelling, management and control. Budapest, Hungary, pp 211–216Google Scholar
  3. 3.
    Salonitis K, Paralikas J, Chryssolouris G (2008) Roll forming of AHSS: Numerical simulation and investigation of effects of main process parameters on quality, Proceedings of the International Conference of Engineering Against Fracture, University of Patras, GreeceGoogle Scholar
  4. 4.
    Wick C, Benedict J, Veilleux R (1984) Tool and manufacturing engineers handbook, Volume 2 Forming, SMEGoogle Scholar
  5. 5.
    International Iron & Steel Institute (2006) Advanced High Strength Steel (AHSS) application guidelines. Committee on Automotive applicationsGoogle Scholar
  6. 6.
    Halmos GT (2006) Roll forming handbook. CRCGoogle Scholar
  7. 7.
    Lindgren M (2005) Modeling and simulation of the roll forming process, Licentiate thesis, Lulea University of technologyGoogle Scholar
  8. 8.
    Kim YY (2002) Buckling analysis and buckling limit of strain on roll forming process. Thesis of Degree of M.Sc. Sogang UniversityGoogle Scholar
  9. 9.
    Jeong SH, Lee SH, Kim GB, Seo HJ, Kim TH (2008) Computer simulation of U-channel for under-rail roll forming using rigid plastic finite element methods. J Mater Process Tech. doi:10.1016/j.jmatprotec.2007.11.130
  10. 10.
    Bui QV, Ponthot JP (2007) Numerical simulation of cold roll-forming processes. J Mater Process Tech. doi:10.1016/j.jmatprotec.2007.08.073
  11. 11.
    Bhattacharyya D, Smith PD, Yee CH, Collins IF (1984) The prediction of deformation length in cold roll forming. J Mech Work Technol 9:181–191CrossRefGoogle Scholar
  12. 12.
    Chiang KF (1984) Cold roll forming, ME. Thesis, University of AucklandGoogle Scholar
  13. 13.
    Fei-Chin Zan (2000) Simulation of cold roll forming process, Thesis, University of PittsburghGoogle Scholar
  14. 14.
    Zhu SD, Panton SM, Duncan JL (1996) The effects of geometric variables in roll forming a channel section. Proc Inst Mech Eng 210:127–134Google Scholar
  15. 15.
    Lindgren M (2005) Finite element model of roll forming of a U-channel profile. Dalarna University of SwedenGoogle Scholar
  16. 16.
    Lindgren M (2007), Cold roll forming of a U-channel made of high strength steel. J Mater Process Tech. doi:10.1016/j.jmatprotec.2006.12.017
  17. 17.
    Panton SM, Zhu SD, Duncan JL (2006) Geometric constraints on the forming path in roll forming channel sections. Proc Inst Mech Eng 206Google Scholar
  18. 18.
    Bhattacharyya D, Smith PD, Thadakamalla SK, Collins JF (1987) The prediction of roll load in cold roll forming. J Mech Work Tech 14:363–379CrossRefGoogle Scholar
  19. 19.
    Nishikawa N, Kohama T, Uchino R, Horino K (1997) Development of roll forming technology with gradual cross sectional change, SAE technical paper series 971741Google Scholar
  20. 20.
    Moen CD, Igusa T, Schafer BW (2008) Prediction of the residual stresses and strains in cold-formed steel members. Thin-walled Struct 46:1274–1289CrossRefGoogle Scholar
  21. 21.
    Heislitz F, Livatyali H, Ahmetoglu MA, Kinzel GL, Altan T (1996) Simulation of roll forming process with the 3D FEM code PAM-STAMP. J Mater Process Technol 59:59–67CrossRefGoogle Scholar
  22. 22.
    Nefussi G, Gilormini P (1993) A simplified method for the simulation of cold roll forming. Int J Mech Sci 10:867–878CrossRefGoogle Scholar
  23. 23.
    Sheu JJ (2004) Simulation and optimization of the cold roll forming process, Materials processing and design: Modeling, Simulation and Applications, Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes; doi:10.1063/1.1766566
  24. 24.
    Hong S, Lee S, Kim S (2001) A parametric study on forming length in roll forming. J Mater Process Technol 113:774–778CrossRefGoogle Scholar
  25. 25.
    Lindgren M, Bexell U, Wikstrom L (2007) Roll forming of partially heated cold rolled stainless steel. J Mater Process Technol. doi:10.1016/j.jmatprotec.2008.07.041
  26. 26.
    ANSYS Release 10.0 (2005) ANSYS LS-Dyna User Guide, ANSYS Inc.Google Scholar
  27. 27.
    Hallquist JO (2006) LS-Dyna Theory manual, Livermore Software Technology CorpGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • John Paralikas
    • 1
  • Konstantinos Salonitis
    • 1
  • George Chryssolouris
    • 1
  1. 1.Laboratory for Manufacturing Systems and Automation, Department of Mechanical Engineering and AeronauticsUniversity of PatrasPatrasGreece

Personalised recommendations