Theoretical and experimental investigation of pulsed laser grooving process

  • Aristidis Stournaras
  • Konstantinos Salonitis
  • Panagiotis Stavropoulos
  • George Chryssolouris


A theoretical model has been developed for simulating the laser grooving process. It takes into account the interaction among subsequent pulses, the required time for the melting temperature to be reached and the subsequent removal of a finite volume of material during each laser pulse. The model predicts the maximum groove depth that can be achieved for a specified set of process parameters, such as laser power, pulsing frequency, and scanning velocity. The theoretical predictions have been experimentally tested with a medium-power laser beam.


Laser beam machining Pulsed laser grooving Process modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chryssolouris G (2005) Manufacturing systems—theory and practice, 2nd edn. Springer, HeidelbergGoogle Scholar
  2. 2.
    Tsoukantas G, Salonitis K, Stavropoulos P, Chryssolouris G (2002) An overview of 3D Laser materials’ processing concepts. Proc SPIE Int Soc Opt Eng 5131:224–228. doi: 10.1117/12.513639 Google Scholar
  3. 3.
    Chrysolouris G (1991) Laser machining: theory and practise. Springer, HeidelbergGoogle Scholar
  4. 4.
    Choi WC, Chrysolouris G (1995) Analysis of the laser grooving and cutting processes. Phys D Appl 28:873–878. doi: 10.1088/0022-3727/28/5/007 CrossRefGoogle Scholar
  5. 5.
    Mai C-C, Lin J (2006) An investigation of the surface contours in laser grooving. Int J Adv Manuf Tech 28:76–81. doi: 10.1007/s00170-004-2342-x CrossRefGoogle Scholar
  6. 6.
    Pan CT, Hocheng H (1996) The anisotropic heat-affected zone in the laser grooving of fiber-reinforced composite material. J Mater Process Technol 62:54–60. doi: 10.1016/0924-0136(95)02192-2 CrossRefGoogle Scholar
  7. 7.
    Sheng P, Chrysolouris G (1995) Theoretical model of laser grooving for composite materials. J Compos Mater 29(1):96–111Google Scholar
  8. 8.
    Chryssolouris G, Sheng P, Choi WC (1989) Investigation of the laser grooving process for ceramic and composite materials. In: Proceedings of the 15th Conference on Production Research and Technology, NSF, SME, University of California at Berkeley, pp 617–622Google Scholar
  9. 9.
    Sheng P, Chryssolouris G (1993) Comparison of surface quality improvement techniques for laser grooving of composite materials. J Manuf Sci Technol ASME 64:795–801Google Scholar
  10. 10.
    Chryssolouris G, Sheng P, Choi WC (1998) Investigation of laser grooving for composite materials. In Ann CIRP 37(1):161–164. doi: 10.1016/S0007-8506(07)61609-6 CrossRefGoogle Scholar
  11. 11.
    Chryssolouris G, Sheng P, Anastasia N (1993) Laser grooving of composite materials with the aid of a water jet. Trans ASME 115:62–72Google Scholar
  12. 12.
    Chryssolouris G, Sheng P (1990) Laser machining composites: just add water. Mach Tech 1(2):1–3Google Scholar
  13. 13.
    Man HC, Duan J, Yue TM (1997) Design and characteristic analysis of supersonic nozzles for high gas pressure laser cutting. J Mater Process Technol 63:217–222. doi: 10.1016/S0924-0136(96)02627-1 CrossRefGoogle Scholar
  14. 14.
    Man HC, Duan J, Yue TM (1998) Dynamic characteristics of gas jets from subsonic and supersonic nozzles for high pressure gas laser cutting. Opt Laser Technol 30:497–509. doi: 10.1016/S0030-3992(98)00083-8 CrossRefGoogle Scholar
  15. 15.
    Brandt AD, Settles GS (1997) Effect of nozzle orientation on the gas dynamics of inert-gas laser cutting of mild steel. J Laser Appl 9(6):269–277Google Scholar
  16. 16.
    Farooq K, Kar A (1998) Removal of laser-melted material with an assist gas. J Appl Phys 83(12):7467–7473. doi: 10.1063/1.367509 CrossRefGoogle Scholar
  17. 17.
    Kar A, Carroll DL, Latham WP, Rothenflue JA (1999) Cutting performance of a chemical oxygen–iodine laser on aerospace and industrial materials. J Laser Appl 11(3):119–127Google Scholar
  18. 18.
    Chen K, Yao YL, Modi V (2000) Gas jet–workpiece interactions in laser machining. J Manuf Sci Eng 122:429–438. doi: 10.1115/1.1285901 CrossRefGoogle Scholar
  19. 19.
    Lalleman G, Jacrot G, Cicala E, Grevey DF (2000) Grooving by Nd:YAG laser treatment. J Mater Process Technol 99:32–37. doi: 10.1016/S0924-0136(99)00256-3 CrossRefGoogle Scholar
  20. 20.
    Mai C-C, Lin J (2003) Supersonic flow characteristics in laser grooving. Opt Laser Technol 35:597–604. doi: 10.1016/S0030-3992(03)00083-5 CrossRefGoogle Scholar
  21. 21.
    Bai Z, Wang A, Xie C (2006) Laser grooving of Al2O3 plate by a pulsed Nd:YAG laser: characteristics and application to the manufacture of gas sensors array heater. Mater Sci Eng A 435–436:418–424. doi: 10.1016/j.msea.2006.08.015 Google Scholar
  22. 22.
    Dhupal D, Doloi B, Bhattacharyya B (2008) Parametric analysis and optimization of Nd:YAG laser micro-grooving of aluminum titanate (Al2TiO5) ceramics. Int J Adv Manuf Technol 36:883–893. doi: 10.1007/s00170-006-0913-8 CrossRefGoogle Scholar
  23. 23.
    Dhupal D, Doloi B, Bhattacharyya B (2008) Pulsed Nd:YAG laser turning of micro-groove on aluminum oxide ceramic (Al2O3). Int J Mach Tools Manuf 48:236–248. doi: 10.1016/j.ijmachtools.2007.08.016 CrossRefGoogle Scholar
  24. 24.
    Chryssolouris G, Bredt J, Kordas S, Wilson E (1998) Theoretical aspects of a laser machine tool. J Eng Ind Technol ASME 110:65–70CrossRefGoogle Scholar
  25. 25.
    Chryssolouris G, Sheng P, Choi WC (1990) Three dimensional laser machining of composite materials. J Eng Mater Technol ASME 112:387–392CrossRefGoogle Scholar
  26. 26.
    Solana P, Kapadia P, Dowden JM, Marsden PJ (1999) An analytical model for the laser drilling of metals with absorption within the vapour. J Phys D Appl Phys 32:942–952. doi: 10.1088/0022-3727/32/8/016 CrossRefGoogle Scholar
  27. 27.
    Tosto S (1999) Modeling and computer simulation of pulsed laser-induced ablation. Appl Phys A 68:439–446CrossRefGoogle Scholar
  28. 28.
    Salonitis K, Stournaras A, Tsoukantas G, Stavropoulos P, Chryssolouris G (2005) A theoretical and experimental investigation on limitations of pulsed laser drilling. J Mater Process Technol 183(1):96–103. doi: 10.1016/j.jmatprotec.2006.09.031 CrossRefGoogle Scholar
  29. 29.
    Stournaras A, Salonitis K, Stavropoulos P, Chryssolouris G (2007) finite element thermal analysis of pulsed laser drilling process. In: Proceedings of the 10th CIRP International Workshop on Modeling of Machining Operations, pp. 549–553Google Scholar
  30. 30.
    Semak VV, Steele RJ, Fuerschbach PW, Damkroger BK (2000) Role of beam absorption in plasma during laser welding. J Phys D Appl Phys 33:1179–1185. doi: 10.1088/0022-3727/33/10/307 CrossRefGoogle Scholar
  31. 31.
    Tsoukantas G, Salonitis K, Stournaras A, Stavropoulos P, Chryssolouris G (2005) On optical design limitations of generalized two-mirror remote beam delivery laser systems: the case of remote welding. Int J Adv Manuf Tech 32(9–10):932–941. doi: 10.1007/s00170-005-0400-7 Google Scholar
  32. 32.
    Ready JF (ed) (2002) In: LIA handbook of laser materials processing. Laser Institute of America, Magnolia, PinevilleGoogle Scholar
  33. 33.
    Holman JP (1997) Heat transfer, 8th edn. McGraw-Hill, New YorkGoogle Scholar
  34. 34.
    Grigoryants A (1994) Basics of laser material processing. Mir, MoscowGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • Aristidis Stournaras
    • 1
  • Konstantinos Salonitis
    • 1
  • Panagiotis Stavropoulos
    • 1
  • George Chryssolouris
    • 1
  1. 1.Laboratory for Manufacturing Systems and Automation, Department of Mechanical Engineering and AeronauticsUniversity of PatrasPatrasGreece

Personalised recommendations