Advertisement

3D finite element temperature field modelling for direct laser fabrication

  • Jia YangEmail author
  • Fude Wang
ORIGINAL ARTICLE

Abstract

In order to describe the thermal dynamics behaviour in direct laser fabrication (DLF), a 3D finite element temperature field model is proposed to be built/developed based on global model and sub-model pattern. The global model exhibits the heat conduction characteristics of parts in the whole thermal history according to scanning path planning. Contact pairs and gap elements, which consider the effect of the temperature and porosity-dependent thermal conduction, are designed in the model to explain powder-to-solid intrinsic transition. In addition, the elements removed and reactivated technology is applied in the model so as to embody the material stepwise increasing feature. A laser-repairing case developed by ABAQUS demonstrates the global model’s thermal history, and the influence of non-linear behaviour of thermal properties in pure nickel on the temperature distribution is estimated as well. Adopting the thermal physical parameters with solid–liquid phase change will make the melted pool temperature higher than that where the solid–liquid phase change parameters are not considered.

Keywords

Direct laser fabrication (DLF) 3D finite element modelling Convection and diffusion Non-linear thermal properties Gap elements Elements removed and reactivated 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sandia National Laboratories (2008) Laser engineered net shaping. Available at http://www.sandia.gov/mst/technologies/net-shaping.html
  2. 2.
    Yakovlev A, Trunova E, Grevey D, Pilloz M, Smurov I (2005) Laser-assisted direct manufacturing of functionally graded 3D objects. Surf Coat Technol 190:15–24 doi: 10.1016/j.surfcoat.2004.07.070 CrossRefGoogle Scholar
  3. 3.
    Pinkerton AJ, Li L (2005) Direct additive laser manufacturing using gas- and water-atomised H13 tool steel powders. Int J Adv Manuf Technol 25:5–6 doi: 10.1007/s00170-003-1844-2 CrossRefGoogle Scholar
  4. 4.
    Wang F, Mei J, Wu X (2006) Microstructure study of direct laser fabricated Ti alloys using powder and wire. Appl Surf Sci 253:1424–1430 doi: 10.1016/j.apsusc.2006.02.028 CrossRefGoogle Scholar
  5. 5.
    Banerjee R, Brice CA, Banerjee S, Fraser HL (2003) Microstructural evolution in laser deposited Ni-25at.% Mo alloy. Mater Sci Eng A 347:1–4 doi: 10.1016/S0921-5093(02)00603-2 CrossRefGoogle Scholar
  6. 6.
    Griffith ML, Schlienger ME, Harwell LD, Oliver MS, Baldwin MD, Ensz MT, Essien M, Brooks J, Robino CV, Smugeresky JE, Hofmeister WH, Wert MJ, Nelson DV (1999) Understanding thermal behavior in the LENS process. Mater Des 20:107–113Google Scholar
  7. 7.
    Dai K, Shaw L (2001) Thermal and stress modeling of multi-material laser processing. Acta Mater 49:4171–4181 doi: 10.1016/S1359-6454(01)00312-3 CrossRefGoogle Scholar
  8. 8.
    Dai K, Shaw L (2004) Thermal and mechanical finite element modeling of laser forming from metal and ceramic powders. Acta Mater 52:69–80 doi: 10.1016/j.actamat.2003.08.028 CrossRefGoogle Scholar
  9. 9.
    Matsumoto M, Shiomi M, Osakada K, Abe F (2002) Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing. Int J Mach Tools Manuf 42:61–67 doi: 10.1016/S0890-6955(01)00093-1 CrossRefGoogle Scholar
  10. 10.
    Chung H, Das S (2004) Numerical modeling of scanning laser-induced melting, vaporization and resolidification in metals subjected to step heat flux input. Int J Heat Mass Transfer 47:4153–4164 doi: 10.1016/j.ijheatmasstransfer.2004.05.003 zbMATHCrossRefGoogle Scholar
  11. 11.
    Kolossov S, Boillat E, Glardon R (2004) 3D FE simulation for temperature evolution in the selective laser sintering process. Int J Mach Tools Manuf 44:117–123 doi: 10.1016/j.ijmachtools.2003.10.019 CrossRefGoogle Scholar
  12. 12.
    Longtin JP, Jikata KH, Ogawa K (1999) Laser induced surface tension driven flows in liquids. Int J Heat Mass Transfer 42:85–93 doi: 10.1016/S0017-9310(98)00134-3 zbMATHCrossRefGoogle Scholar
  13. 13.
    Peng XF, Lin XP, Lee DJ, Yan Y, Wang BX (2001) Effects of initial molten pool and Marangoni flow on solid melting. Int J Heat Mass Transfer 44:457–470 doi: 10.1016/S0017-9310(00)00070-3 zbMATHCrossRefGoogle Scholar
  14. 14.
    Yang LX, Peng XF, Wang BX (2001) Numerical modeling and experimental investigation on the characteristics of molten pool during laser processing. Int J Heat Mass Transf 44:4465–4473 doi: 10.1016/S0017-9310(01)00086-2 zbMATHCrossRefGoogle Scholar
  15. 15.
    Pinkerton AJ, Li L (2004) Modeling the geometry of a moving laser melt pool and deposition track via energy and mass balances. J Phys D Appl Phys 37:1885–1895 doi: 10.1088/0022-3727/37/14/003 CrossRefGoogle Scholar
  16. 16.
    Li JF, Li L, Stott FH (2004) A three-dimensional numerical model for a convection–diffusion phase change process during laser melting of ceramic materials. Int J Heat Mass Transfer 47:5523–5539 doi: 10.1016/j.ijheatmasstransfer.2004.07.024 zbMATHCrossRefGoogle Scholar
  17. 17.
    Keller M, Wilhelm S (2006) 3-D simulation of laser additive manufacturing using ABAQUS. Available at http://www.abaquscentral.com/downloads/ACUC_2005/Matt_Keller/Keller_Presentation.pdf
  18. 18.
    ABAQUS Inc. (2004) ABAQUS version 6.5 documentation: theory manual.. ABAQUS Inc., USAGoogle Scholar
  19. 19.
    Mills KC (2002) Recommended values of thermophysical properties for selected commercial alloys. Woodhead, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  1. 1.School of Mechanical EngineeringHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.IRC in MaterialsThe University of BirminghamEdgbastonUK

Personalised recommendations