Influence of roughness parameters and surface texture on friction during sliding of pure lead over 080 M40 steel

  • Pradeep L. Menezes
  • Kishore
  • Satish V. Kailas


In the present investigation, tests were conducted on a tribological couple made of cylindrical lead pin with spherical tip against 080 M40 steel plates of different textures with varying roughness under both dry and lubricated conditions using an inclined pin-on-plate sliding tester. Surface roughness parameters of the steel plates were measured using optical profilometer. The morphologies of the worn surfaces of the pins and the formation of transfer layer on the counter surfaces were observed using a scanning electron microscope. It was observed that the coefficient of friction and the formation of transfer layer depend primarily on the surface texture of hard surfaces. A newly formulated non-dimensional hybrid roughness parameter called ‘ξ’ (a product of number of peaks and maximum profile peak height) of the tool surface plays an important role in determining the frictional behaviour of the surfaces studied. The effect of surfaces texture on coefficient of friction was attributed to the variation of plowing component of friction, which in turn depends on the roughness parameter ‘ξ’.


Friction Surface texture Transfer layer Roughness parameters 


  1. 1.
    Mohan S, Agarwala V, Ray S (1992) Friction characteristics of stir-cast Al–Pb alloys. Wear 157:9–17 doi: 10.1016/0043-1648(92)90184-A CrossRefGoogle Scholar
  2. 2.
    Buchanan VE, Moiianbt PA, Sudamhan TS, Akersb A (1991) Frictional behavior of non-equilibrium Cu–Pb alloys. Wear 146:241–256 doi: 10.1016/0043-1648(91)90066-4 CrossRefGoogle Scholar
  3. 3.
    An J, Liu YB, Lu Y (2004) The influence of Pb on the friction and wear behavior of Al–Si–Pb alloys. Mater Sci Eng A 373:294–302 doi: 10.1016/j.msea.2004.01.051 CrossRefGoogle Scholar
  4. 4.
    Geng H, Ma J (1993) Friction and wear of Al–Zn–Pb bearing alloy. Wear 169:201–207 doi: 10.1016/0043-1648(93)90299-2 CrossRefGoogle Scholar
  5. 5.
    Wang XJ, Rigney DA (1995) Sliding behavior of Pb–Sn alloys. Wear 181–183:290–301Google Scholar
  6. 6.
    Wagner S (2001) Optimizing friction between die and sheet metal. Proceedings of the Global Symposium on Innovations in Materials: Processing and Manufacturing, United States, pp 245–267Google Scholar
  7. 7.
    Lakshmipathy R, Sagar R (1992) Effect of die surface topography on die-work interfacial friction in open die forging. Int J Mach Tools Manuf 32(5):685–693 doi: 10.1016/0890-6955(92)90023-A CrossRefGoogle Scholar
  8. 8.
    Malayappan S, Narayanasamy R (2004) An experimental analysis of upset forging of aluminium cylindrical billets considering the dissimilar frictional conditions at flat die surfaces. Int J Adv Manuf Technol 23(9–10):636–643 doi: 10.1007/s00170-003-1584-3 CrossRefGoogle Scholar
  9. 9.
    Määttä A, Vuoristo P, Mäntylä T (2001) Friction and adhesion of stainless steel strip against tool steels in unlubricated sliding with high contact load. Tribol Int 34:779–786 doi: 10.1016/S0301-679X(01)00074-3 CrossRefGoogle Scholar
  10. 10.
    Staph HE, Ku PM, Carper HJ (1973) Effect of surface roughness and surface texture on scuffing. Mech Mach Theory 8:197–208CrossRefGoogle Scholar
  11. 11.
    Koura MM (1980) The effect of surface texture on friction mechanisms. Wear 63:1–12 doi: 10.1016/0043-1648(80)90069-1 CrossRefGoogle Scholar
  12. 12.
    Hu ZM, Dean TA (2000) A study of surface topography, friction and lubricants in metal forming. Int J Mach Tools Manuf 40:1637–1649 doi: 10.1016/S0890-6955(00)00014-6 CrossRefGoogle Scholar
  13. 13.
    Hayashi N, Matsui A, Takahashi S (1999) Effect of surface topography on transferred film formation in plastic and metal sliding system. Wear 225–229:329–338 doi: 10.1016/S0043-1648(98)00364-0 CrossRefGoogle Scholar
  14. 14.
    Nieminen I, Andersson P, Holmberg K (1989) Friction measurement by using a scratch test method. Wear 130:167–178 doi: 10.1016/0043-1648(89)90230-5 CrossRefGoogle Scholar
  15. 15.
    Xie Y, Hawthorne HM (2000) On the possibility of evaluating the resistance of materials to wear by ploughing using a scratch method. Wear 240:65–71 doi: 10.1016/S0043-1648(00)00336-7 CrossRefGoogle Scholar
  16. 16.
    Jardret V, Zahouani H, Loubet JL, Mathia TG (1998) Understanding and quantification of elastic and plastic deformation during a scratch test. Wear 218:8–14 doi: 10.1016/S0043-1648(98)00200-2 CrossRefGoogle Scholar
  17. 17.
    Wang LY, Yin ZF, Zhang J, Chun-I C, Hsu S (2000) Strength measurement of thin lubricating films. Wear 237:155–162 doi: 10.1016/S0043-1648(99)00312-9 CrossRefGoogle Scholar
  18. 18.
    Liu Z, Sun J, Shen W (2002) Study of plowing and friction at the surfaces of plastic deformed metals. Tribol Int 35:511–522 doi: 10.1016/S0301-679X(02)00046-4 CrossRefGoogle Scholar
  19. 19.
    Gadelmawla ES, Koura MM, Maksoud TMA, Elewa IM, Soliman HH (2002) Roughness parameters. J Mater Process Technol 123:133–145 doi: 10.1016/S0924-0136(02)00060-2 CrossRefGoogle Scholar
  20. 20.
    Hirst W, Hollander AE (1974) Surface finish and damage in sliding. Proc R Soc Lond Ser A 337:379–394CrossRefGoogle Scholar
  21. 21.
    Bello DO, Walton S (1987) Surface topography and lubrication in sheet-metal forming. Tribol Int 20:59–65 doi: 10.1016/0301-679X(87)90091-0 CrossRefGoogle Scholar
  22. 22.
    Singh R, Melkote SN, Hashimoto F (2005) Frictional response of precision finished surfaces in pure sliding. Wear 258:1500–1509 doi: 10.1016/j.wear.2004.03.071 CrossRefGoogle Scholar
  23. 23.
    Myers NO (1962) Characterization of surface roughness. Wear 5:182–189 doi: 10.1016/0043-1648(62)90002-9 CrossRefGoogle Scholar
  24. 24.
    Feder J (1988) Fractals. Plenum, New York, USAzbMATHGoogle Scholar
  25. 25.
    Hasegawa M, Liu J, Okuda K, Nunobiki M (1996) Calculation of fractal dimension of machined surface profiles. Wear 192:40–45 doi: 10.1016/0043-1648(95)06768-X CrossRefGoogle Scholar
  26. 26.
    Bowden FP, Tabor D (1954) The friction and lubrication of solids. Clarendon, Oxford, UKGoogle Scholar
  27. 27.
    Fischer TE, Bhattacharya S, Salher R (1988) Lubrication by a smectic liquid crystal. Tribol Trans 31:442–448 doi: 10.1080/10402008808981846 CrossRefGoogle Scholar
  28. 28.
    Hamrock BJ, Dowson D (1981) Ball bearing lubrication. Wiley, New YorkGoogle Scholar
  29. 29.
    Stachowiak GW, Batchelor AW (2001) Engineering tribology. Butterworth Heinemann, USAGoogle Scholar
  30. 30.
    Gahr KHZ (1987) Microstructure and wear of materials. Elsevier, UKGoogle Scholar
  31. 31.
    Bowden FP, Ridler KEW (1936) Physical properties of surfaces. III. The surface temperature of sliding metals the temperature of lubricated surfaces. Proc R Soc Lond Ser A: Math Phys Sci 154:640–656CrossRefGoogle Scholar
  32. 32.
    Brandes EA, Brook GB (1992) Smithells metals reference book. Butterworth and Heinemann, Oxford, UKGoogle Scholar
  33. 33.
    Subhash G, hang W (2002) Investigation of the overall friction coefficient in single-pass scratch test. Wear 252:123–134 doi: 10.1016/S0043-1648(01)00852-3 CrossRefGoogle Scholar
  34. 34.
    Wang F-X, Lacey P, Gates RS, Hsu SM (1991) A study of the relative surface conformity between two surfaces in sliding contact. ASME J Tribol 113:755–761CrossRefGoogle Scholar
  35. 35.
    Sahoo P, Chowdhury SKR (2002) A fractal analysis of adhesive wear at the contact between rough solids. Wear 253:924–934 doi: 10.1016/S0043-1648(02)00243-0 CrossRefGoogle Scholar
  36. 36.
    Varadi K, Neder Z, Friedrich K (1996) Evaluation of the real contact areas, pressure distributions and contact temperatures during sliding contact between real metal surfaces. Wear 200:55–62CrossRefGoogle Scholar
  37. 37.
    Yoshioka N (1997) A review of the micromechanical approach to the physics of contacting surfaces. Tectonophysics 277:29–40CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • Pradeep L. Menezes
    • 1
  • Kishore
    • 1
  • Satish V. Kailas
    • 2
  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Mechanical EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations