Ultraprecision turning of electroless nickel: effects of crystal orientation and origin of diamond tools

  • A. Pramanik
  • K. S. Neo
  • M. Rahman
  • X. P. Li
  • M. Sawa
  • Y. Maeda


This paper deals with (i) the performance of natural and artificial diamond tools and (ii) the effects of crystal orientations at rake face of diamond tool for long distance (>200 km) ultraprecision machining of electroless nickel. The criteria for cutting performance of the diamond tool include flank wear, crater wear, workpiece surface finish, and cutting forces. Experimental results show that the natural diamond tool has superior performance compared to the artificial one as it experienced lower cutting forces and lower flank and crater wears. It was also found that the cutting tool with {110} crystal orientation at rake face performs better than the tool with {100} crystal orientation in terms of amount of wear, surface finish, and cutting forces.


Ultraprecision machining Electroless nickel Diamond tool Long cutting distance 


  1. 1.
    Rahman K, Rezaur M, Rahman M, Neo KS, Sawa M, Maeda Y (2006) Microgrooving on electroless nickel plates materials using a single crystal diamond tool. Int J Adv Manuf Technol 27:911–917 doi:10.1007/s00170-004-2273-6 CrossRefGoogle Scholar
  2. 2.
    Ikawa N, Shimada S, Morooka H (1987) Technology of diamond tool for ultra-precision metal cutting. Bull Jpn Soc Prec Eng 21:233–238Google Scholar
  3. 3.
    Rahman M, Lim HS, Neo KS, Senthil KA, Wong YS, Li XP (2007) Tool-based nanofinishing and micromachining. J Mater Process Technol 185(1–3):2–16 doi:10.1016/j.jmatprotec.2006.03.121 CrossRefGoogle Scholar
  4. 4.
    Yuan ZJ, He JC, Yao YX (1992) The optimum crystal plane of natural diamond tool for precision machining. Ann CIRP 41(1):605–608CrossRefGoogle Scholar
  5. 5.
    Hurt HH, Decker DL (1984) Tribology of considerations of the diamond single-point tool. SPIE 508:126–131 (Production Aspect of Single Point Machined Optics)Google Scholar
  6. 6.
    Sharif UM, Seah KHW, Li XP, Rahman M, Liu K (2004) Effect of crystallographic orientation on wear of diamond tools for nano-scale ductile cutting of silicon. Wear 257:751–759 doi:10.1016/j.wear.2004.03.012 CrossRefGoogle Scholar
  7. 7.
    Oomen JM, Eisses J (1992) Wear of monocrystalline diamond tools during ultra-precision machining of non-ferrous metal. Precis Eng 14(4):206–218 doi:10.1016/0141-6359(92)90018-R CrossRefGoogle Scholar
  8. 8.
    Biddut AQ, Rahman M, Neo KS, Rezaur RKM, Sawa M, Maeda Y (2006) Performance of single crystal diamond tools with different rake angles during micro-grooving on electroless nickel plated die materials. Int J Adv Manuf Technol 33(9–10):891–899 doi:10.1007/s00170-006-0535-1 Google Scholar
  9. 9.
    Wada R, Komada H, Mizutani Y, Shimura Y (1980) Wear characteristics of single crystal diamond tool. CIRP Ann 29(1):47–52 doi:10.1016/S0007-8506(07)61293-1 CrossRefGoogle Scholar
  10. 10.
    Pramanik A, Neo KS, Rahman M, Li XP, Sawa M, Meada Y (2003) Cutting performance of diamond tools during ultra-precision turning of electroless nickel plated die materials. J Mater Process Technol 140(1–3):308–313 doi:10.1016/S0924-0136(03)00751-9 CrossRefGoogle Scholar
  11. 11.
    Pramanik A, Neo SK, Rahman M, Li XP, Sawa M, Meada Y (2007) Ultra-precision turning of electroless-nickel: effect of phosphorus contents, depth-of-cut and rake angle. J Mater Process Technol doi:10.1016/j.jmatprotec.2008.01.006
  12. 12.
    Yan J, Sasaki T, Tamaki J, Kubo A, Sugino T (2004) Chip formation behaviour in ultra-precision cutting of electroless nickel plated mold substrates. Key Engineering Materials 257–258:3–8 (Advances in Abrasive Technology)CrossRefGoogle Scholar
  13. 13.
    Zone-Ching L, Wun-Ling L, Lin HY, Liu CR (1997) Residual stress with different tool flank wear lengths in the ultra-precision machining of Ni–P alloys. J Mater Process Technol 65:116–126 doi:10.1016/0924-0136(95)02251-1 CrossRefGoogle Scholar
  14. 14.
    Blank V, Popov M, Pivovaron G, Lvova N, Terentev S (1999) Mechanical properties of different types of diamond. Diam Relat Mater 8:1531–1535 doi:10.1016/S0925-9635(99)00079-5 CrossRefGoogle Scholar
  15. 15.
    John W, Eileen W (1991) Properties and applications of diamond. Butterworth and Heinemann, OxfordGoogle Scholar
  16. 16.
    Kenjiro U, Entaro T, Kyun JK (1988) Lapping and frictional properties of diamond, and characteristics of diamond cutting tool. J Mech Working Technol 17:147–155 doi:10.1016/0378-3804(88)90016-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • A. Pramanik
    • 1
    • 2
  • K. S. Neo
    • 1
  • M. Rahman
    • 1
  • X. P. Li
    • 1
  • M. Sawa
    • 3
  • Y. Maeda
    • 3
  1. 1.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.School of AMMEThe University of Sydney, NSW 2006SydneyAustralia
  3. 3.Production Engineering Research LaboratoryHitachi Ltd.YokohamaJapan

Personalised recommendations