Hybrid metaheuristics for unrelated parallel machine scheduling with sequence-dependent setup times

ORIGINAL ARTICLE

Abstract

This paper proposes several hybrid metaheuristics for the unrelated parallel-machine scheduling problem with sequence-dependent setup times given the objective of minimizing the weighted number of tardy jobs. The metaheuristics begin with effective initial solution generators to generate initial feasible solutions; then, they improve the initial solutions by an approach, which integrates the principles of the variable neighborhood descent approach and tabu search. Four reduced-size neighborhood structures and two search strategies are proposed in the metaheuristics to enhance their effectiveness and efficiency. Five factors are used to design 32 experimental conditions, and ten test problems are generated for each condition. Computational results show that the proposed hybrid metaheuristics are significantly superior to several basic tabu search heuristics under all the experimental conditions.

Keywords

Weighted number of tardy jobs Unrelated parallel machine Sequence-dependent setup Variable neighborhood descent Tabu search 

References

  1. 1.
    Yu L, Shih HM, Pfund M, Carlyle WM, Fowler JW (2002) Scheduling of unrelated parallel machines: an application to PWB manufacturing. IIE Trans 34:921–931Google Scholar
  2. 2.
    Hsieh JC, Chang PC, Hsu LC (2003) Scheduling of drilling operations in printed circuit board factory. Comp Industr Engin 44:461–473, doi:10.1016/S0360-8352(02)00231-0 CrossRefGoogle Scholar
  3. 3.
    Kim DW, Kim KH, Jang W, Chen FF (2002) Unrelated parallel machine scheduling with setup times using simulated annealing. Robo Comput-Integr Manuf 18:223–231, doi:10.1016/S0736-5845(02)00013-3 CrossRefGoogle Scholar
  4. 4.
    Piersma N, van Dijk W (1996) A local search heuristic for unrelated parallel machine scheduling with efficient neighborhood search. Math Comput Model 24:11–19, doi:10.1016/0895-7177(96)00150-1 MATHCrossRefGoogle Scholar
  5. 5.
    Ghirardi M, Potts CN (2005) Makespan minimization for scheduling unrelated parallel machines: A recovering beam search approach. Eur J Oper Res 165:457–467, doi:10.1016/j.ejor.2004.04.015 MATHCrossRefGoogle Scholar
  6. 6.
    Chen JF (2005) Unrelated parallel machine scheduling with secondary resource constraints. Int J Adv Manuf Technol 26:285–292, doi:10.1007/s00170-003-1622-1 CrossRefGoogle Scholar
  7. 7.
    Weng MX, Lu J, Ren H (2001) Unrelated parallel machine scheduling with setup consideration and a total weighted completion time objective. Int J Prod Econ 70:215–226, doi:10.1016/S0925-5273(00)00066-9 CrossRefGoogle Scholar
  8. 8.
    Suresh V, Chaudhuri D (1994) Minimizing maximum tardiness for unrelated parallel machines. Int J Prod Econ 34:223–229, doi:10.1016/0925-5273(94)90038-8 CrossRefGoogle Scholar
  9. 9.
    Chen JF (2006) Minimization of maximum tardiness on unrelated parallel machines with process restrictions and setups. Int J Adv Manuf Technol 29:557–563Google Scholar
  10. 10.
    Guinet A (1995) Scheduling independent jobs on uniform parallel machines to minimize tardiness criteria. J Intell Manuf 6:95–103, doi:10.1007/BF00123681 CrossRefGoogle Scholar
  11. 11.
    Randhawa SU, Kuo CH (1997) Evaluating scheduling heuristics for non-identical parallel processors. Int J Prod Res 35:969–981, doi:10.1080/002075497195489 MATHCrossRefGoogle Scholar
  12. 12.
    Ho JC, Chang YL (1995) Minimizing the number of tardy jobs for m-parallel machines. Eur J Oper Res 84:343–355, doi:10.1016/0377–2217(93)E0280-B MATHCrossRefGoogle Scholar
  13. 13.
    Lawler EL, Moore JM (1969) A functional equation and its application to resource allocation and sequencing problems. Manage Sci 16:77–84MATHCrossRefGoogle Scholar
  14. 14.
    Ruiz-Torres AJ, Lopez FJ, Ho JC (2007) Scheduling uniform parallel machines subject to a secondary resource to minimize the number of tardy jobs. Eur J Oper Res 179:302–315, doi:10.1016/j.ejor.2006.03.028 MATHCrossRefGoogle Scholar
  15. 15.
    M’Hallah R, Bulfin RL (2005) Minimizing the weighted number of tardy jobs on parallel processors. Eur J Oper Res 160:471–484, doi:10.1016/j.ejor.2003.06.027 MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24:1097–1100, doi:10.1016/S0305–0548(97)00031–2 MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hansen P, Mladenović N (2001) Variable neighborhood search: principles and applications. Eur J Oper Res 130:449–467, doi:10.1016/S0377–2217(00)00100–4 MATHCrossRefGoogle Scholar
  18. 18.
    Ribeiro CC, Souza MC (2002) Variable neighborhood search for the degree-constrained minimum spanning tree problem. Discrete Appl Math 118:43–54, doi:10.1016/S0166-218X(01)00255-4 MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Moreno-Pérez JA, Moreno-Vega JM, Martín IR (2003) Variable neighborhood tabu search and its application to the median cycle problem. Eur J Oper Res 151:365–378, doi:10.1016/S0377-2217(02)00831-7 CrossRefGoogle Scholar
  20. 20.
    Bräysy O (2003) A reactive variable neighborhood search for the vehicle-routing problem with time windows. INFORMS J Comput 15:347–368, doi:10.1287/ijoc.15.4.347.24896 CrossRefMathSciNetGoogle Scholar
  21. 21.
    Polacek M, Hartl RF, Doerner K (2004) A variable neighborhood search for the multi depot vehicle routing problem with time windows. J Heuristics 10:613–627, doi:10.1007/s10732–005–5432–5 CrossRefGoogle Scholar
  22. 22.
    Hansen P, Mladenović N, Urošević D (2004) Variable neighborhood search for the maximum clique. Discrete Appl Math 145:117–125, doi:10.1016/j.dam.2003.09.012 MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Fleszar K, Hindi KS (2004) Solving the resource-constrained project scheduling problem by a variable neighbourhood search. Eur J Oper Res 155:402–413, doi:10.1016/S0377-2217(02)00884-6 MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Davidović T, Hansen P, Mladenović N (2005) Permutation based genetic, tabu and variable neighborhood search heuristics for multiprocessor scheduling with communication delays. Asia-Pacific J Oper Res 22:297–326, doi:.1142/S021759590500056X MATHCrossRefGoogle Scholar
  25. 25.
    Glover F (1989) Tabu search, part I. ORSA J Comp 1:190–206MATHMathSciNetGoogle Scholar
  26. 26.
    Armentano VA, Yamashita DS (2000) Tabu search for scheduling on identical parallel machines to minimize mean tardiness. J Intellig Manufact 11:453–460, doi:10.1023/A:1008918229511 CrossRefGoogle Scholar
  27. 27.
    Kim CO, Shin HJ (2003) Scheduling jobs on parallel machines: a restricted tabu search approach. Int J Adv Manuf Technol 22:278–287, doi:10.1007/s00170-002-1472-2 CrossRefGoogle Scholar
  28. 28.
    Bilge Ü, Kıraç F, Kurtulan M, Pekgün P (2004) A tabu search algorithm for parallel machine total tardiness problem. Comput Oper Res 31:397–414, doi:10.1016/S0305-0548(02)00198-3 MATHCrossRefGoogle Scholar
  29. 29.
    Potts CN, Van Wassenhove LN (1982) A decomposition algorithm for the single machine total tardiness problem. Ops Res Lett 1:177–181, doi:10.1016/0167-6377(82)90035-9 MATHCrossRefGoogle Scholar
  30. 30.
    Rios-Mercado RZ, Bard JF (1998) Heuristics for the flow line problem with setup costs. Eur J Oper Res 110:76–98, doi:10.1016/S0377-2217(97)00213-0 MATHCrossRefGoogle Scholar
  31. 31.
    Lee GC, Kim YD, Choi SW (2004) Bottleneck-focused scheduling for a hybrid flowshop. Int J Prod Res 42:165–181, doi:10.1080/00207540310001602892 MATHCrossRefGoogle Scholar
  32. 32.
    Choi SW, Kim YD, Lee GC (2005) Minimizing total tardiness of orders with reentrant lots in a hybrid flowshop. Int J Prod Res 43:2149–2167, doi:10.1080/00207540500050071 MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  1. 1.Department of MISNational Chengchi UniversityTaipei CityRepublic of China
  2. 2.Department of Accounting InformationTakming University of Science and TechnologyTaipei CityRepublic of China

Personalised recommendations