Surface geometric parameters proposal for the advanced control of abrasive waterjet technology

  • Jan Valíček
  • Sergej HlochEmail author
  • Dražan Kozak


The paper deals with a proposal for surface geometric parameters for advanced quality control of abrasive waterjet technology according to the results obtained by means of non-contact optical shadow method. The main emphasis is put on the analysis of results for defining the process for prediction of new surface creation generated by the set of the abrasive waterjet factors stream of abrasive waterjet, including its geometric parameters. By means of decomposition of measured surface profile according to the root mean square parameter, in four topographical different zones the initial zone, the smooth zone, the transition zone and the rough zone new possibilities for evaluation of the surface quality and optimizing the selected technological factors of the cutting process and their control through the proposed databank conceptual structure are presented. This report deals with the problems of selecting and proposing an acceptable method for surface quality control which is available for continuous measurement and production.


Geometric parameters Abrasive waterjet Quality control 


  1. 1.
    Arola D, Ramulu M. Mechanism of material removal in abrasive waterjet machining. In: Proceedings of the Seventh American Waterjet Conference, Seattle, Washington, 1993, pp 43–64Google Scholar
  2. 2.
    Babu MK, Chetty OVK (2006) A study on the use of single mesh size abrasives in abrasive waterjet machining. Int J Adv Manuf Technol, vol 29: 532–540Google Scholar
  3. 3.
    Bátora B, Vasilko K (2000) Machined surfaces: technological heredity, functionality. Trenčín, pp-183Google Scholar
  4. 4.
    Blickwedel H, Guo NS, Haferkamp H, Louis H (1990) Prediction of abrasive jet cutting effeciency and quality. In: Proceedings of the 10th international sympozium on jet cutting technology, BHRA, Fluid Engineering Centre, Cranfield, UKGoogle Scholar
  5. 5.
    Chen FL, Siores E, Patel K (2002) Improving the cut surface qualities using different controlled nozzle oscillation techniques. Int J Mach Tools Manuf 42:717–722 DOI  10.1016/S0890-6955(01)00161-4 CrossRefGoogle Scholar
  6. 6.
    Guo NS (1994) Schneidprozess und Schnittqualität beim Wasserabrasiusstrahl - schneiden. VDI Verlag, Duesseldorf, pp 1–174Google Scholar
  7. 7.
    Hashish M (1984) Modeling study of metal cutting with abrasive waterjets. Trans ASME J Eng Mater Technol 106(1):88–100CrossRefGoogle Scholar
  8. 8.
    Hashish M (1979) Prediction equations relating high velocity jet cutting performance to stand off distance and multipasses. J Eng Ind 101:311–318Google Scholar
  9. 9.
    Hashish M (1992) On the modelling of surface waviness produced by abrasive-waterjets. In: Proceedings of the eleventh international symposium on jet cutting technology, Kent, Washington, pp 17–34Google Scholar
  10. 10.
    Hashish M (1989) Pressure effect in sbrassive waterjet (AWJ) machining. Trans ASME J Eng Mater Technol 111(7):221–228Google Scholar
  11. 11.
    Hloch S, Gombár M, Fabian S, Straka L (2006) Factor analysis of abrasive waterjet process factors influencing the cast aluminum surface roughness. Manufacturing science and technology. Malaysia, pp 145–149Google Scholar
  12. 12.
    Lebar A, Junkar M (2001) Surface evaluation methods for advanced AWJ cutting techniques. Manufacturing systems (Aachen), 31(2): 101–103Google Scholar
  13. 13.
    Lemma E, Chen L, Siores E, Wang J (2002) Optimizing the AWJ cutting process of ductile materials using nozzle oscillation technique. Int J Mach Tools Manuf 42:781–789 DOI  10.1016/S0890-6955(02)00017-2 CrossRefGoogle Scholar
  14. 14.
    Raja J, Muralikrishnan B, Fu S (2002) Recent advances in separation of roughness, waviness and form. Precis Eng 26:222–235CrossRefGoogle Scholar
  15. 15.
    Valíček J et al (2007) Experimental analysis of irregularities of metallic surfaces generated by abrasive waterjet. In: Int J Mach Tools Manuf, 47(11):1786–1790, DOI  10.1016/j.ijmachtools.2007.01.004
  16. 16.
    Valíček J et al (2007) An investigation of surfaces generated by abrasive waterjets using. Strojniški Vestnik, 53(4): 224–232Google Scholar
  17. 17.
    Vasilko K, Lipták J, Kozáková D, Modrák V (1990) New materials and technologies of their machining. Alfa, pp-365Google Scholar
  18. 18.
    Zeng J, Kim TJ (1990) A study of brittle erosion mechanism applied to abrasive waterjet processes. Proc. the 10th Int. Symp. on jet cutting technology, BHRA, EnglandGoogle Scholar
  19. 19.
    Kušnerová M, Hlaváč LM (2006) Self vibrating chambers with continuous passage of liquid. Transaction of VŠB - TUO. Engineering ed. č. 1/2006, roč. LII. VŠB-TUO, Ostrava, s. 127–134. ISSN 1210-0471Google Scholar
  20. 20.
    Stoić A, Lucić M, Kopač J (2006) Evaluation of the stability during hard turning. Stroj Vestn 52(11):723–737Google Scholar
  21. 21.
    Cebalo R, Stoić A (2003) Optimisation of the roughness of the ground surface by diamond roller dressing. Teh Vjesn 3(4):3–8Google Scholar
  22. 22.
    Foldyna J, Sitek L, Švehla B, Švehla Š (2004) Utilization of ultrasound to enhance high-speed water jet effects. Ultrason Sonochem 11:131–137 DOI  10.1016/j.ultsonch.2004.01.008 CrossRefGoogle Scholar
  23. 23.
    Kuric I, Novák-Marcinčin J, Cotetiu R, Ungurueanu N (2007) Development of progressive technologies: Computer support for progressive technologies. International DAAAM Vienna, pp. 253Google Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  1. 1.Institute of Physics, Faculty of Mining and GeologyTechnical University of OstravaOstrava-PorubaCzech Republic
  2. 2.Department of Technology Systems Operation, Faculty of Manufacturing TechnologiesTechnical University of Košice (Prešov)PrešovSlovakia
  3. 3.Mechanical Engineering Faculty in Slavonski BrodJosip Juraj Strossmayer University of OsijekSlavonski BrodCroatia

Personalised recommendations