FPGA based failure monitoring system for machining processes

  • Luis Alfonso Franco-Gasca
  • René de Jesús Romero-Troncoso
  • Gilberto Herrera-Ruiz
  • Rebeca del Rocío Peniche-Vera
ORIGINAL ARTICLE

Abstract

To be adapted in an easy and economical manner to several machining processes is a desired characteristic in any proposed tool condition monitoring system so as to detect or avoid failures in machine tools. Many modern rotating machines have a servodriver which may, without sensors, acquire a current signal which is directly related to the cutting forces and then be correlated to the cutting tool conditions. Most of the reported systems are designed to work only in one machining process; yet the novelty of this paper is the fact of presenting a hardware signal processing unit implemented in a single field-programmable gate array (FPGA) for acquisition, conditioning, and basic signal monitoring in several machining processes. The system has been proven in industrial processes as well as in laboratories with satisfactory results in both cases. This model is reconfigurable and scalable so that it may be adapted to diverse conditions as an economical stand-alone unit since it does not require either computers nor microprocessors.

Keywords

Hardware signal processing FPGA Monitoring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dimla DE (2000) Sensor signals for tool-wear monitoring in metal cutting operations—a review of methods. Int J Mach Tools Manu 40:1073–1098CrossRefGoogle Scholar
  2. 2.
    Prickett CJ, Johns C (1999) An overview of approaches to end milling tool monitoring. Int J Mach Tools Manu 39:105–122CrossRefGoogle Scholar
  3. 3.
    Jantunen E (2002) A summary of methods applied to tool condition monitoring in drilling. Int J Mach Tools Manu 42:997–1010CrossRefGoogle Scholar
  4. 4.
    Geddam A, Chung KT (2003) A multi-sensor approach to the monitoring of end milling operations. J Mater Process Tech 139:15–20CrossRefGoogle Scholar
  5. 5.
    Bejhem M, Nicolescu C (1999) Machining condition monitoring for automation. In: Proceedings of the 3rd SME international conference in machining & grinding, Cincinnati, OH, USAGoogle Scholar
  6. 6.
    Teltz RW, Shawky A, Urbasik K, Elbestawi MA (1995) Sensor based planning and control for open architecture machining. In: Proceedings of the XXIII SME NAMRC conference, Houghton, MI, USAGoogle Scholar
  7. 7.
    Heyns PS, Scheffer C, Kratz H, Klocke F (2003) Development of a tool wear-monitoring system for hard turning. Int J Mach Tools Manu 43:973–985CrossRefGoogle Scholar
  8. 8.
    Smith GC, Lee SS (2005) A method for detecting tool wear on a CNC lathe using a doppler radar detector. Int J Adv Manu Technol 25:270–280CrossRefGoogle Scholar
  9. 9.
    Li X (2001) Real-time prediction of workpiece errors for a CNC turning centre, part 3. Cutting force estimation using current sensors. Int J Adv Manu Technol 17:659–664CrossRefGoogle Scholar
  10. 10.
    Kang-Jae L, Taik-Min L, Min-Yang Y (2007) Tool wear monitoring system for CNC end milling using a hybrid approach to cutting force regulation. Int J Adv Manu Technol 32:8-17CrossRefGoogle Scholar
  11. 11.
    Park SS, Altintas Y, Pritschow G, Albrecht A (2005) High frequency bandwidth cutting force measurement in milling using capacitance displacement sensors. Int J Mach Tools Manu 45:993–1008CrossRefGoogle Scholar
  12. 12.
    Prickett PW, Amer W, Grosvenor RI (2005) Sweeping filters and tooth rotation energy estimation (TREE) techniques for machine tool condition monitoring. Int J Mach Tools Manu 45:1–8CrossRefGoogle Scholar
  13. 13.
    Goebel K, Yan W (2000) Feature selection for tool wear diagnosis using soft computing techniques. Proc ASME Manu Eng Div 11:157–163Google Scholar
  14. 14.
    Fussell BK, Jerard RB, Hemmett JG (2001) Robust federate selection for 3-axis NC machining using discrete models. ASME J Manu Sci Engineering 123:214–224CrossRefGoogle Scholar
  15. 15.
    Seker U, Kurt A, Çiftçi I (2004) The effect of feed rate on the cutting forces when machining with linear motion. J Mater Process Tech 146:403–407CrossRefGoogle Scholar
  16. 16.
    Li X, Djordjevich A, Venuvinod PK (2000) Current-sensor-based feed cutting force intelligent estimation and tool wear condition monitoring. IEEE Trans Ind Elect 47(3):697–702CrossRefGoogle Scholar
  17. 17.
    López de Lacalle LN, Lamikiz A, Sánchez JA, Fernández de Bustos I (2006) Recording of real cutting forces along the milling of complex parts. Mechatronics 16:21–32CrossRefGoogle Scholar
  18. 18.
    Li X, Venuvinod PK, Chen MK (2000) Feed cutting force estimation from the current measurement with hybrid learning. Int J Adv Manu Tech 16:859–862CrossRefGoogle Scholar
  19. 19.
    Li X, Tso SK (1999) Drill wear monitoring based on current signals. Wear 231:172–178CrossRefGoogle Scholar
  20. 20.
    Burr-Brown Corporation (2003) ADS7862 data sheet. Texas Instruments, Inc.Google Scholar
  21. 21.
    Burr-Brown Corporation (1999) DAC7612 data sheet. Texas Instruments, Inc.Google Scholar
  22. 22.
    Xilinx (2003) The Spartan-3 FPGA family data sheet. Xilinx, Inc., CA, USAGoogle Scholar
  23. 23.
    Mathworks (2002) Filter design toolbox user’s guide. The Mathworks, Inc., Natick, MA, USAGoogle Scholar
  24. 24.
    Romero-Troncoso RJ, Herrera-Ruiz G, Teról-Villalobos I, Jáuregui-Correa JC (2004) FPGA based on-line tool breakage detection system for CNC milling machines. Mechatronics 14:439–454CrossRefGoogle Scholar
  25. 25.
    Li X, Tso SK, Wang J (2000) Real-time tool condition monitoring using wavelet transforms and fuzzy techniques. IEEE T Syst Man Cy C 30:(3):352–357Google Scholar
  26. 26.
    Wang L, Mehrabi MG, Kannatey-Asibu E (2001) Tool wear monitoring in machining processes through wavelet analysis. In: Proceedings of XXIX SME NAMRC Conference, The University of Florida, Gainesville, FL USAGoogle Scholar
  27. 27.
    Li X, Dong S, Yuan Z (1999) Discrete wavelet transform for tool breakage monitoring. Int J Mach Tools Manu 39:1935–1944CrossRefGoogle Scholar
  28. 28.
    Tarng YS, Lee BY (1999) Milling cutter breakage detection by the discrete wavelet transform. Mechatronics 9:225–234CrossRefGoogle Scholar
  29. 29.
    Poularikas AD (2000) Wavelet transform. The transforms and applications handbook. CRC Press, Boca Raton, FL, USAGoogle Scholar
  30. 30.
    Kasashima K, Mori K, Herrera-Ruiz G (1994) Diagnosing cutting tool conditions in milling using wavelet transform. In: Proceedings of the 7th international JSPE conference on production/precision engineering, Chiba, JapanGoogle Scholar
  31. 31.
    Franco-Gasca LA, Herrera-Ruiz G, Romero-Troncoso RJ (2006) Sensorless tool failure monitoring system for drilling machines. Int J Mach Tools Manu 46:381–386CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • Luis Alfonso Franco-Gasca
    • 1
  • René de Jesús Romero-Troncoso
    • 3
  • Gilberto Herrera-Ruiz
    • 2
  • Rebeca del Rocío Peniche-Vera
    • 2
  1. 1.LabCASDCIATEQ, Advanced Technology CenterQuerétaroMéxico
  2. 2.Mechatronics Laboratory, Facultad de IngenieríaUniversidad Autónoma de Querétaro Cerro de las Campanas s/nQuerétaroMéxico
  3. 3.Electronics DepartmentFIMEE–Universidad de GuanajuatoSalamancaMéxico

Personalised recommendations