Advertisement

Dynamic behaviour improvement for a torus milling cutter using balance of the transversal cutting force

  • Patrick Gilles
  • Guillaume Cohen
  • Frederic Monies
  • Walter Rubio
ORIGINAL ARTICLE

Abstract

This article deals with five-axis machining of free-form surfaces with torus cutters and round inserts. An orientation of the tool axis to make a dynamic tool behaviour as stable as possible is presented in this work. With this new method an improvement of 50% on different roughness criteria can be obtained. For that, tool axis inclination will be towards the back of the tool compared to the feed direction that will allows to all inserts to machine simultaneously. The global cutting phenomenon is then continuous and it is thus possible to find a tool axis inclination that decreases its vibrations. It will be shown that this calculated tool axis inclination allows on the one hand to reduce the transversal tool deflections and in the other hand to stabilize the dynamic tool behaviour. A better quality on the finished workpiece is then obtained.

Keywords

Five-axis machining Tool axis orientation Transversal cutting force Tool vibrations Roughness Sound intensity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fontaine M, Devillez A, Moufki A, Dudzinski D (2006) Predictive force model for ball-end milling and experimental validation with a wavelike form machining test. Int J Mach Tools Manuf 46(3–4):367–380, MarchCrossRefGoogle Scholar
  2. 2.
    Ozturk B, Lazoglu I (2006) Machining of free-form surfaces. Part I: Analytical chip load. Int J Mach Tools Manuf 46(7–8):728–735, JuneCrossRefGoogle Scholar
  3. 3.
    Roth D, Bedi S., Ismail F, Mann S (2001) Surface swept by a toroidal cutter during 5-axis machining. Comput Aided Des 33(1):57–63, JanuaryCrossRefGoogle Scholar
  4. 4.
    Warkentin A, Ismail F, Bedi S (2000) Multi-point tool positioning strategy for 5-axis machining of sculptured surfaces. Comput Aided Geom Des 17(1):83–100, JanuaryCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gray PJ, Bedi S, Ismail F (2005) Arc-intersect method for 5-axis tool positioning. Comput Aided Des 37(7):663–674, JuneCrossRefGoogle Scholar
  6. 6.
    Monies F, Mousseigne M, Redonnet JM, Rubio W (2004) Determining a collision-free domain for the tool in five-axis machining. Int J Prod Res 42(21):4513–4530zbMATHCrossRefGoogle Scholar
  7. 7.
    Hosseinkhani Y, Akbari J, Vafaeesefat A (2007) Penetration-elimination method for five-axis CNC machining of sculptured surfaces. Int J Mach Tools Manuf 47(10):1625–1635, AugustCrossRefGoogle Scholar
  8. 8.
    Jensen CG, Red WE, Pi J (2002) Tool selection for five-axis curvature matched machining. Comput Aided Des 34(3):251–266, MarchCrossRefGoogle Scholar
  9. 9.
    Sabberval AJP (1960) Chip section and cutting force during the milling operation. Ann CIRP 63:197–203Google Scholar
  10. 10.
    Kline WA, Devor RE, Lindberg JR (1982) The prediction of cutting force in end milling with application to cornering cuts. Int J Mach Tool Des ResGoogle Scholar
  11. 11.
    Gilles P, Monies F, Rubio W (2006) Modelling cutting forces in milling on torus cutters. Int J Mach Machinabil Mater 1(2):166–185CrossRefGoogle Scholar
  12. 12.
    Franco P, Estrems M, Faura F (2004) Influence of radial and axial runouts on surface roughness in face milling with round insert cutting tools. Int J Mach Tools Manuf 44(15):1555–1565, DecemberCrossRefGoogle Scholar
  13. 13.
    Jae young Choi, Hae do Jeong (2004) A study on polishing of molds using hydrophilic fixed abrasive pad. Int J Mach Tools Manuf 44(11):1163–1169, SeptemberGoogle Scholar
  14. 14.
    Li Z, Chen W (2006) A global cutter positioning method for multi-axis machining of sculptured surfaces. Int J Mach Tools Manuf 46(12–13):1428–1434, OctoberCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • Patrick Gilles
    • 1
  • Guillaume Cohen
    • 1
  • Frederic Monies
    • 1
  • Walter Rubio
    • 1
  1. 1.Laboratoire de Génie Mécanique, Filière de Génie Mécanique, Bât. 3PNToulouse Cedex 4France

Personalised recommendations