Thermal modeling of the material removal rate and surface roughness for die-sinking EDM

  • K. Salonitis
  • A. Stournaras
  • P. Stavropoulos
  • G. Chryssolouris
ORIGINAL ARTICLE

Abstract

The die-sinking electrical discharge machining (EDM) process is characterized by slow processing speeds. Research effort has been focused on optimizing the process parameters so as for the productivity of the process to be increased. In this paper a simple, thermal based model has been developed for the determination of the material removal rate and the average surface roughness achieved as a function of the process parameters. The model predicts that the increase of the discharge current, the arc voltage or the spark duration results in higher material removal rates and coarser workpiece surfaces. On the other hand the decrease of the idling time increases the material removal rate with the additional advantage of achieving slightly better surface roughness values. The model’s predictions are compared with experimental results for verifying the approach and present good agreement with them.

Keywords

EDM Material removal rate Surface roughness Process modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chryssolouris G (2005) Manufacturing systems-Theory and practice. 2nd (ed.), Springer, BerlinGoogle Scholar
  2. 2.
    Erden A, Kaftanoglou B (1981) Thermo-mathematical modeling and optimization of energy pulse forms in electric discharge machining (EDM). Int J Mach Tool D R 21:11–22CrossRefGoogle Scholar
  3. 3.
    Van Coppenolle B, Dauw DF (1995) On the Evolution of EDM Research Part 1: Modeling and Controlling the EDM Process. Proc ISEM XI Int Symp for Electro-Machining, pp 117–131Google Scholar
  4. 4.
    Tariq Jilani S, Pandley PC (1982) Analysis and modelling of EDM parameters. Precis Eng 4(4):215–221CrossRefGoogle Scholar
  5. 5.
    DiBitonto DD, Eubank PT, Patel MR, Barrufet MA (1989) Theoretical models of the electrical discharge machining process. I A simple cathode erosion model. J Appl Phys 66(9):4095–4103CrossRefGoogle Scholar
  6. 6.
    Patel MR, Barrufet MA, Eubank PT, DiBitonto DD (1989) Theoretical models of the electrical discharge machining process. II The anode erosion model. J Appl Phys 66(9):4104–4111CrossRefGoogle Scholar
  7. 7.
    Yadav V, Jain VK, Dixit PM (2002) Thermal stresses due to electrical discharge machining. Int J Mach Tool Manuf 42:877–888CrossRefGoogle Scholar
  8. 8.
    Das S, Klotz M, Klocke F (2003) EDM Simulation: finite element-based calculation of deformation, microstructure and residual stresses. J Mater Process Tech 142:434–451CrossRefGoogle Scholar
  9. 9.
    Schulze H-P, Herms R, Juhr H, Schaetzing W, Wolenber G (2004) Comparison of measured and simulated crater morphology for EDM. J Mater Process Tech 149:316–322CrossRefGoogle Scholar
  10. 10.
    Marafona J, Chousal JAG (2006) A finite element model of EDM based on the Joule effect. Int J Mach Tool Manuf 46:595–602CrossRefGoogle Scholar
  11. 11.
    Singh A, Ghosh A (1999) A thermo-electric model of material removal during electric discharge machining. Int J Mach Tool Manuf 39:669–682CrossRefGoogle Scholar
  12. 12.
    Dhanik S, Joshi SS (2005) Modeling of a single resistance capacitance pulse discharge in micro-electro discharge machining. J Manuf Sci E–T ASME 127:759–767CrossRefGoogle Scholar
  13. 13.
    Albinski K, Musiol K, Miernikiewicz A, Labuz S, Malota M (1995) Plasma temperature in electro-discarge machining. Proc ISEM XI Int Symp for Electro-Machining, pp 143–152Google Scholar
  14. 14.
    Karthikeyan R, Narayanan RPL, Naagarazan RS (1999) Mathematical modelling for electric discharge machining of aluminium-silicon carbide particulate composites. J Mater Process Tech 87:59–63CrossRefGoogle Scholar
  15. 15.
    Chen Y, Mahdavian SM (1999) Parametric study into erosion wear in a computer numerical controlled electro-discharge machining process. Wear 236:350–354CrossRefGoogle Scholar
  16. 16.
    Puertas I, Luis CJ, Alvarez L (2004) Analysis of the influence of EDM parameters on surface quality, MRR and EW of WC-Co. J Mater Process Tech 153–154:1026–1032CrossRefGoogle Scholar
  17. 17.
    Zhang QH, Du R, Zhang JH, Zhang QB (2006) An investigation of ultrasonic-assisted electrical discharge machining in gas. Int J Mach Tool Manuf, In pressGoogle Scholar
  18. 18.
    Erden A (1983) Effect of materials on the mechanism of electric discharge machining (EDM). J Eng Mater-T ASME 108:247–251Google Scholar
  19. 19.
    Ikai T, Hashigushi K (1995) Heat input for crater formation in EDM. Proc ISEM XI Int Symp for Electro-Machining, pp 163–170Google Scholar
  20. 20.
    Tamura T, Kobayashi Y (2004) Measurement of impulsive forces and crater formation in impulse discharge. J Mater Process Tech 149:212–216CrossRefGoogle Scholar
  21. 21.
    Rebelo JC, Dias AM, Mesquita R, Vassalo P, Santos M (2000) An experimental study on electro-discharge machining and polishing of high strength copper-beryllium alloys. J Mater Process Tech 103:389–397CrossRefGoogle Scholar
  22. 22.
    Kiyak M, Cakýr O (2007) Examination of machining parameters on surface roughness in EDM of tool steel. J Mater Process Tech 191:141–144CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2007

Authors and Affiliations

  • K. Salonitis
    • 1
  • A. Stournaras
    • 1
  • P. Stavropoulos
    • 1
  • G. Chryssolouris
    • 1
  1. 1.Laboratory for Manufacturing Systems and Automation, Department of Mechanical Engineering and AeronauticsUniversity of PatrasPatrasGreece

Personalised recommendations