Magnesium and its alloys applications in automotive industry

ORIGINAL ARTICLE

Abstract

The objective of this study is to review and evaluate the applications of magnesium in the automotive industry that can significantly contribute to greater fuel economy and environmental conservation. In the study, the current advantages, limitations, technological barriers and future prospects of Mg alloys in the automotive industry are given. The usage of magnesium in automotive applications is also assessed for the impact on environmental conservation. Recent developments in coating and alloying of Mg improved the creep and corrosion resistance properties of magnesium alloys for elevated temperature and corrosive environments. The results of the study conclude that reasonable prices and improved properties of Mg and its alloys will lead to massive use of magnesium. Compared to using alternative materials, using Mg alloys results in a 22% to 70% weight reduction. Lastly, the use of magnesium in automotive components is increasing as knowledge of forming processes of Mg alloys increases.

Keywords

Magnesium Mg components Mg applications Automotive industry Transportation Fuel economy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davies G (2003) Magnesium. Materials for automotive bodies, Elsevier, G. London, pp 91, 158, 159Google Scholar
  2. 2.
    Kuo JL, Sugiyama S, Hsiang SH, Yanagimoto J (2006) Investigating the characteristics of AZ61 Magnesium alloy on the hot and semi-solid compression test. Int J Adv Manuf Technol 29(7–8):670–677CrossRefGoogle Scholar
  3. 3.
    Jain CC, Koo CH (2007) Creep and corrosion properties of the extruded magnesium alloy containing rare earth. Mater Trans 2:265–272CrossRefGoogle Scholar
  4. 4.
    Blawert C, Hort N, Kainer KV (2004) Automotive applications of magnesium and its alloys. Trans Indian Inst Met 57(4):397–408Google Scholar
  5. 5.
    Eliezer D, Aghion E, Froes FH (1998) Magnesium science and technology. Adv Mat Performance 5:201–212CrossRefGoogle Scholar
  6. 6.
    Aghion E, Bronfin B (2000) Magnesium alloys development towards the 21(st) century. Magnesium alloys 2000 Mat Sci Forum 350(3):19–28Google Scholar
  7. 7.
    Friedrich H, Schumann S (2001) Research for a “new age of magnesium” in the automotive industry. J Mater Process Technol 117:276–281CrossRefGoogle Scholar
  8. 8.
    Schuman S (2005) The paths and strategies for increased magnesium application in vehicles. Mat Sci Forum 488–489:1–8Google Scholar
  9. 9.
    Dieringa H, Kainer KU (2007) Magnesium-der zukunftswerkstoff für die automobilindustrie. Mat-wiss U Werkstofftech 38(2):91–95CrossRefGoogle Scholar
  10. 10.
    Tang B, Wang Xs, Li SS, Zeng DB, Wu R (2005) Effects of Ca combined with Sr additions on microstructure and mechanical properties of AZ91D. Mater Sci Technol 21(29):574–578CrossRefGoogle Scholar
  11. 11.
    Michalek JJ, Papalambros PY, Skerlos SJ (2004) A study of fuel efficiency and emission policy impact on optimal vehicle design decisions. J Mech Des 126(6):1062–1070CrossRefGoogle Scholar
  12. 12.
    Medraj M, Parvez A (2007) Analyse the importance of Magnesium-aluminium-strontium alloys for more fuel-efficient automobiles. Automotive 45–47Google Scholar
  13. 13.
    Aichinger HM (1996) Reduced fuel consumption through weight-saving in passenger vehicles-importance of steel as a lightweight material. Stahl Und Eisen 116(6):71Google Scholar
  14. 14.
    Kurihara Y (1994) The role of aluminum in automotive weight-reduction. 2. JOM J Miner Metals Mater Society 46(2):33–35Google Scholar
  15. 15.
    Das S (2003) Magnesium for automotive applications: primary production cost assessment. JOM J Miner Metals Mater Society 55(11):22–26Google Scholar
  16. 16.
    (2000) Emission control, Automotive World 4:10–15Google Scholar
  17. 17.
    Aghion E, Bronfin B, Eliezer D (2001) The role of the magnesium industry in protecting the environment. J Mater Process Technol 117(3):381–385CrossRefGoogle Scholar
  18. 18.
    (2001) Annual Report. Int. Magnesium AssociationGoogle Scholar
  19. 19.
    Kammer C (2001) Magnesium Taschenbuch. Aluminium, Verlag, Germany p 1Google Scholar
  20. 20.
    Brown B (2007) Magnesium application in the short term. http://www.magnesium.com/W3/data-bank/article.php?mgw=199&magnesium=286
  21. 21.
    Commission of the European Communities (2007), Results of the review of the Community Strategy to reduce CO2 emissions from passenger cars and light-commercial vehicles, {SEC(2007) 60}{SEC(2007) 61}, COM(2007) 19 finalGoogle Scholar
  22. 22.
    United Nations (February 2007), Kyoto protocol reference manual on accounting of emissions and assigned amountsGoogle Scholar
  23. 23.
    Price on Magnesium and Aluminium (2007) http://www.lightmetals.org/e/documents/LMTinretospect.pdf
  24. 24.
    Hakamada M, Furuta T, Chino Y, Chen Y, Kusuda H, Mabuchi M (2007) Life cycle inventory study on magnesium alloy substitution in vehicles. Energy 32(8):1352–1360CrossRefGoogle Scholar
  25. 25.
    Fitch P, Cooper JS (2005) Life-cycle modeling for adaptive and variant design. Res Eng Design 15(4):216–228CrossRefGoogle Scholar
  26. 26.
    Das S (2000) The life-cycle impacts of aluminum body-in-white automotive. JOM J Miner Metals Mater Society 50(8):41–44Google Scholar
  27. 27.
    Tkachenko VG, Maksimchuk IN, Volosevich PY, Lashuk NK, Malka AN, Friezel VV (2006) Creep resistance and long-term strength of structural magnesium alloys. High Temp Mater Proc 25(1–2):97–107Google Scholar
  28. 28.
    Pekguleryuz MO, Kaya AA (2003) Creep resistant magnesium alloys for powertrain applications. Adv Eng Mater 5(12):866–878CrossRefGoogle Scholar
  29. 29.
    Baril E, Labelle P, Pekguleryuz MO (2003) Elevated temperature Mg-Al-Sr: Creep resistance, mechanical properties, and microstructure. Jom-Journal of the Minerals Metals & Materials Society 55(11):A34–A39Google Scholar
  30. 30.
    Aghion E, Bronfin B, Von Buch F, Schumann S, Friedrich H (2003) Newly developed magnesium alloys for powertrain applications. Jom-J Miner Metals Mater Society 55(11):A30–A33Google Scholar
  31. 31.
    Pekguleryuz MO, Baril E, Labelle P, Argo D (2003) Creep resistant Mg-Al-Sr alloys. J Adv Mater 35(3):32–38Google Scholar
  32. 32.
    Grieve DJ (2001) Magnesium Die Castings. http://www.tech.plym.ac.uk/sme/mech330/magcast.htm
  33. 33.
    Bavarian Motor Works (2007) Magnesium fosters rebirth of an automotive engine. International magnesium association: The global voice for magnesium (May):1–3Google Scholar
  34. 34.
    AIST (2007) New technology for increasing the application for magnesium alloys. http://www.aist.go.jp/aist_e/latest_research/2001/20011203/20011203.html
  35. 35.
    Robots 4 welding (2007) Welding magnesium. http://www.robots4welding.com/magnesium-welding-automation.htm
  36. 36.
    Kulekci MK, Şik A, Kaluç E (2007) Effects of tool rotation and pin diameter on fatigue properties of friction stir welded lap joints. Int J Adv Manuf Technol DOI 10.1007/s00170-006-0901-z
  37. 37.
    Chi CT, Chao CG (2007) Characterization on electron beam welds and parameters for AZ31B-F extrusive plates. J Mater Process Technol 182(1–3):369–373CrossRefGoogle Scholar
  38. 38.
    Liu LM, Wang SX, Zhu ML (2006) Study on TIG welding of dissimilar Mg alloy and Cu with Fe as interlayer. Sci Technol Weld Join 11(5):523–525CrossRefGoogle Scholar
  39. 39.
    Chang WS, Kim HJ, Noh JS, Bang HS (2006) The evaluation of weldability for AZ31B-H24 and AZ91C-F Mg alloys in friction stir welding. Key Eng Mater 321–323:1723–1728CrossRefGoogle Scholar
  40. 40.
  41. 41.
    Huang ZH, Guo XF, Zhang ZM (2006) Effects of alloying on microstructure and mechanical property of AZ91D magnesium alloy. Rare Met Mater Eng 35(3):363–366Google Scholar
  42. 42.
    Garmo EPD, Black JT, Kohser RA (1997) Magnesium and magnesium alloys. Materials and processes in manufacturing (8th Edition). Wiley, USA, pp 182–184Google Scholar
  43. 43.
    Novotny S, Geiger M (2003) Process design for hydroforming of lightweight metal sheets at elevated temperatures. J Mater Process Technol 138:594–599CrossRefGoogle Scholar
  44. 44.
    Haferkamp H, Boehm R, Holzkamp U, Jaschik C, Kaese V, Niemeyer M (2001) Alloy development, processing and applications in magnesium lithium alloys. Mater Trans 42(7):1160–1166CrossRefGoogle Scholar
  45. 45.
    Sreejith PS, Ngoi BKA (2000) Dry machining: machining of the future. J Mater Process Technol 101:287–291CrossRefGoogle Scholar
  46. 46.
    ASM Handbook vol. 2, 1961, p. 1081Google Scholar
  47. 47.
    Report (2001) “Magnesium in the aerospace industry”, NFPA: National fire protection association. Ref: ANM-112N-04-07, Rev.c.USAGoogle Scholar
  48. 48.
    Shi ZM, Song GL, Atrens A (2006) Influence of anodising current on the corrosion resistance of anodised AZ91D magnesium alloy. Corros Sci 48(8):1939–1959CrossRefGoogle Scholar
  49. 49.
    Niu LY, Jiang ZH, Li GY, Gu CD, Lian JS (2006) A study and application of zinc phosphate coating on AZ91D magnesium alloy. Surf Coat Technol 200(9):3021–3026CrossRefGoogle Scholar
  50. 50.
    Polmear IJ (1994) Magnesium alloys and applications. Mater Sci Technol 10(1):1–14Google Scholar
  51. 51.
    Magnesium Pure and Alloys, Norsk Hydro ReportGoogle Scholar
  52. 52.
    Mg application in automotive industry (2007) http://www.avisma.ru/mg/eng/03-2.htm

Copyright information

© Springer-Verlag London Limited 2007

Authors and Affiliations

  1. 1.Mersin University, Faculty of Tarsus Technical EducationTarsusTurkey

Personalised recommendations