Reconfigurable filtering system for sensorless signal acquisition in machining processes

  • Luis Alfonso Franco-Gasca
  • René de Jesús Romero-Troncoso
  • Gilberto Herrera-Ruiz
  • Rebeca del Rocío Peniche-Vera
ORIGINAL ARTICLE

Abstract

Tool condition monitoring is a major problem that must be handled in order to detect and prevent failures in machine tools. Most modern rotating machines have a servo driver whence it is possible to acquire without sensors a current signal which is associated with cutting forces and cutting tool condition. This paper presents a hardware signal processing unit implemented in a field programmable gate array to acquire and condition signals from several machining processes. The system has been tested in both industrial and laboratory processes, producing satisfactory results. The design is reconfigurable in situ, since a few internal registers are programmed dynamically without recompilation which allows the same unit to be applied in different processes; the content of this memory is a set of filter coefficients. This implementation guarantees an inexpensive stand-alone unit since it does not require computers or microprocessors to process signals from different machinery as preparation for further processing.

Keywords

Signal conditioning Hardware signal processing FPGA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prickett PW, Amer W, Grosvenor RI (2005) Sweeping filters and tooth rotation energy estimation (TREE) techniques for machine tool condition monitoring. Int J Mach Tools Manuf 45:1–8CrossRefGoogle Scholar
  2. 2.
    Park SS, Altintas Y, Pritschow G, Albrecht A (2005) High frequency bandwidth cutting force measurement in milling using capacitance displacement sensors. Int J Mach Tools Manuf 45:993–1008CrossRefGoogle Scholar
  3. 3.
    Romero-Troncoso RJ, Herrera-Ruiz G (2004) FPGA based on-line tool breakage detection system for CNC milling machines. Mechatronics 14:439–454CrossRefGoogle Scholar
  4. 4.
    Smith GC, Lee SS (2005) A method for detecting tool wear on a CNC lathe using a doppler radar detector. Int J Adv Manuf Technol 25:270–280CrossRefGoogle Scholar
  5. 5.
    Li X (2001) Detection of tool flute breakage in end milling using feed-motor current signatures. IEEE/ASME T Mech 6(4):491–498CrossRefGoogle Scholar
  6. 6.
    Szwajka K, Górski J (2006) Evaluation tool condition of milling wood on the basis of vibration signal. J Phys: Conf Ser 48:1205–1209CrossRefGoogle Scholar
  7. 7.
    Goebel K, Yan W (2000) Feature selection for tool wear diagnosis using soft computing techniques. Proc ASME Manuf Eng Div 11:157–163Google Scholar
  8. 8.
    Li X, Venuvinod PK, Chen MK (2000) Feed cutting force estimation from the current measurement with hybrid learning. Int J Adv Manuf Technol 16:859–862CrossRefGoogle Scholar
  9. 9.
    Elhachimi M, Torbaty S, Joyot P (1999) Mechanical modelling of high speed drilling 2: predicted and experimental results. Int J Mach Tools Manuf 39:569–581CrossRefGoogle Scholar
  10. 10.
    Nadgir A, Özel T (2000) Neural network modeling of flank wear for tool condition monitoring in orthogonal cutting of hardened steels. 4th Int Conf Eng Desig Auto, FL, USAGoogle Scholar
  11. 11.
    Chiou RY, Chen JSJ, Lu L, Cole I (2002) Prediction of heat transfer behavior of carbide inserts with embedded heat pipes for dry machining. Proc IMECE ASME Int Mech Eng Conf, LA, USAGoogle Scholar
  12. 12.
    Li X (2001) Real-time prediction of workpiece errors for a CNC turning centre, part 3. Cutting force estimation using current sensors. Int J Adv Manuf Technol 17:659–664CrossRefGoogle Scholar
  13. 13.
    López de Lacalle LN, Lamikiz A, Sánchez JA, Fernández de Bustos I (2006) Recording of real cutting forces along the milling of complex parts. Mechatronics 16:21–32CrossRefGoogle Scholar
  14. 14.
    Tseng PC, Chou A (2002) The intelligent on-line monitoring of end milling. Int J Mach Tools Manuf 42:89–97CrossRefGoogle Scholar
  15. 15.
    Ertunc HM, Loparo KA, Ocak H (2001) Tool wear condition monitoring in drilling operations using hidden Markov models (HMMs). Int J Mach Tools Manuf 41:1363–1384CrossRefGoogle Scholar
  16. 16.
    Romero-Troncoso RJ, Herrera-Ruiz G, Terol-Villalobos I, Jáuregui-Correa JC (2003) Driver current analysis for sensorless tool breakage monitoring of CNC milling machines. Int J Mach Tools Manuf 43:1529–1534CrossRefGoogle Scholar
  17. 17.
    Heyns PS, Scheffer C, Kratz H, Klocke F (2003) Development of a tool wear-monitoring system for hard turning. Int J Mach Tools Manuf 43:973–985CrossRefGoogle Scholar
  18. 18.
    Li X, Djordjevich A, Venuvinod PK (2000) Current-sensor-based feed cutting force intelligent estimation and tool wear condition monitoring. IEEE Trans Ind Electron 47:697–702CrossRefGoogle Scholar
  19. 19.
    Pahk HJ, Lee DS, Park JH (2001) Ultra precision positioning system for servo motor-piezo actuator using the dual servo loop and digital filter implementation. Int J Mach Tools Manuf 41:51–63CrossRefGoogle Scholar
  20. 20.
    Rahnejat H, Vafaei S, Aini R (2002) Vibration monitoring of high speed spindles using spectral analysis techniques. Int J Mach Tools Manuf 42:1223–1234CrossRefGoogle Scholar
  21. 21.
    Jantunen E (2002) A summary of methods applied to tool condition monitoring in drilling. Int J Mach Tools Manuf 42:997–1010CrossRefGoogle Scholar
  22. 22.
    Prickett PW, Johns C (1999) An overview of approaches to end milling tool monitoring. Int J Mach Tools Manuf 39:105–122CrossRefGoogle Scholar
  23. 23.
    Dimla DE Sr (2000) Sensor signals for tool-wear monitoring in metal cutting operations- a review of methods. Int J Mach Tools Manuf 40:1073–1098CrossRefGoogle Scholar
  24. 24.
    Sung-Chong C (2005) Temperature estimation in drilling processes by using an observer. Int J Mach Tools Manuf 45:1641–1651CrossRefGoogle Scholar
  25. 25.
    Kang-Jae L, Taik-Min L, Min-Yang Y (2007) Tool wear monitoring system for CNC end milling using a hybrid approach to cutting force regulation. Int J Adv Manuf Technol 32:8–17CrossRefGoogle Scholar
  26. 26.
    Lanzetta M (2001) A new flexible high-resolution vision sensor for tool condition monitoring. J Mater Process Tech 119:73–82CrossRefGoogle Scholar
  27. 27.
    Feng Z, Chen X (2007) Image processing of grinding wheel surface. Int J Manuf Technol 32:27–33CrossRefGoogle Scholar
  28. 28.
    Burr-Brown Corporation (2003) ADS7862 data sheet. Burr-Brown Corporation, a division of Texas Instruments IncGoogle Scholar
  29. 29.
    Xilinx Inc (2003) The Spartan-3 FPGA family data sheet, Xilinx IncGoogle Scholar
  30. 30.
    Burr-Brown Corporation (1999) DAC7612 data sheet Burr-Brown Corporation, a division of Texas Instruments IncGoogle Scholar
  31. 31.
    The Mathworks Inc (2002) Filter design toolbox user’s guide. The Mathworks, Inc.Google Scholar

Copyright information

© Springer-Verlag London Limited 2007

Authors and Affiliations

  • Luis Alfonso Franco-Gasca
    • 1
  • René de Jesús Romero-Troncoso
    • 2
  • Gilberto Herrera-Ruiz
    • 1
  • Rebeca del Rocío Peniche-Vera
    • 1
  1. 1.Mechatronics Laboratory, Facultad de IngenieríaUniversidad Autónoma de QuerétaroQuerétaroMéxico
  2. 2.Departamento de ElectrónicaFIMEE-Universidad de GuanajuatoSalamancaMéxico

Personalised recommendations