Advertisement

Kinematics of 3-RPS parallel manipulators by means of screw theory

ORIGINAL ARTICLE

Abstract

In this work the forward position analysis of parallel manipulators with identical limbs, type revolute-prismatic-spherical (RPS), is carried out applying recursively the Sylvester dialytic elimination method. Afterwards, the velocity and acceleration analyses of the mechanisms at hand are addressed using the theory of screws. A numerical example is provided to prove the efficacy of the chosen methodology for the kinematic analyses of the mechanisms under study.

Keywords

Parallel manipulator Analytical form solution Klein form Screw theory Forward kinematics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ionescu T (2003) Standardization of terminology. Mech Mach Theory 38(7–10):597–1111MATHMathSciNetGoogle Scholar
  2. 2.
    Hunt KH (1983) Structural kinematics of in-parallel-actuated robot arms. ASME J Mech Transm Aut Des 105:705–712Google Scholar
  3. 3.
    Lee KM, Shah DK (1987) Kinematic analysis of a three-degree-of-freedom in-parallel actuated manipulator. In: Proceedings IEEE International Conference on Robotics and Automation 1:345–350Google Scholar
  4. 4.
    Kim HS, Tsai L-W (2003) Kinematic synthesis of a spatial 3-RPS parallel manipulator. ASME J Mech Des 125:92–97CrossRefGoogle Scholar
  5. 5.
    Liu CH, Cheng S (2004) Direct singular positions of 3RPS parallel manipulators. ASME J Mech Des 126:1006–1016CrossRefGoogle Scholar
  6. 6.
    Lu Y, Leinonen T (2005) Solution and simulation of position-orientation for multi-spatial 3-RPS Parallel mechanisms in series connection. Multibody Syst Dyn 14:47–60CrossRefGoogle Scholar
  7. 7.
    Huang Z, Fang YF (1996) Kinematic characteristics analysis of 3 DOF in-parallel actuated pyramid mechanism. Mech Mach Theory 31:1009–1018CrossRefGoogle Scholar
  8. 8.
    Fang Y, Huang Z (1997) Kinematics of a three-degree-of-freedom in-parallel actuated manipulator mechanism. Mech Mach Theory 32:789–796CrossRefGoogle Scholar
  9. 9.
    Huang Z, Wang J (2001) Identification of principal screws of 3-DOF parallel manipulators by quadric degeneration. Mech Mach Theory 36:893–911MATHCrossRefGoogle Scholar
  10. 10.
    Agrawal SK (1991) Study of an in-parallel mechanism using reciprocal screws. In: Proceedings of 8th World Congress on TMM 405–408Google Scholar
  11. 11.
    Huang Z, Wang J (2000) Instantaneous motion analysis of deficient-rank 3-DOF parallel manipulator by means of principal screws. In: Proceedings of A Symposium Commemorating the Legacy, Works, and Life of Sir Robert Stawell Ball Upon the 100th Anniversary of a Treatise on the Theory of ScrewsGoogle Scholar
  12. 12.
    Huang Z, Wang J, Fang Y (2002) Analysis of instantaneous motions of deficient-rank 3-RPS parallel manipulators. Mech Mach Theory 37:229–240MATHCrossRefGoogle Scholar
  13. 13.
    Tsai L-W (1999) Robot analysis. WileyGoogle Scholar
  14. 14.
    Innocenti C, Parenti-Castelli V (1990) Direct position analysis of the Stewart platform mechanism. Mech Mach Theory 35(6):611–621CrossRefGoogle Scholar
  15. 15.
    Sugimoto K (1987) Kinematic and dynamic analysis of parallel manipulators by means of motor algebra. ASME J Mech Transm Autom Des 109:3–7Google Scholar
  16. 16.
    Rico JM, Duffy J (1996) An application of screw algebra to the acceleration analysis of serial chains. Mech Mach Theory 31:445–457CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2007

Authors and Affiliations

  • Jaime Gallardo
    • 1
  • Horacio Orozco
    • 1
  • José M. Rico
    • 2
  1. 1.Department of Mechanical EngineeringInstituto Tecnológico de CelayaCelaya, Gto.Mexico
  2. 2.FIMEEUniversidad de GuanajuatoSalamanca, Gto.Mexico

Personalised recommendations