Tool path planning for five-axis flank milling with developable surface approximation

  • Chih-Hsing Chu
  • Jang-Ting Chen
Original Article


This paper presents a novel approach that automatically generates an interference-free tool path for five-axis flank milling of a ruled surface. A boundary curve of the machined surface is subdivided into curve segments. Each segment works as a guide curve in the design method for developable Bézier surface that controls a developable patch for approximating the surface with available degrees of freedom. Geometric algorithms are proposed for calculating consecutive patches with G1 continuity across the patch boundary. A tapered tool can move along the rulings of these patches without inducing local tool interference as a result of their developability. The machining deviation is controlled by the surface approximation error. A machining test is conducted with the generated CL data and the result verifies the feasibility of the proposed approach. This work successfully transforms avoidance of tool interference into a geometric modeling problem and provides a simple solution. It thus demonstrates a good potential for the developable surface theory of five-axis flank machining .


Developable surface Five-axis machining Flank milling Ruled surface  Tool interference 


  1. 1.
    Vickers GB, Guan KW (1989) Ball-mills versus end-mills for curved surface machining. ASME J Eng Ind 111:22–26CrossRefGoogle Scholar
  2. 2.
    Damsohn H (1976) Fünfachsiges NC-Fräsen, ein Beitrag zur Technologie Teileprogrammierung und Postprozessorverarbeitung. Dissertation, Univ Stuttgart, GermanyGoogle Scholar
  3. 3.
    Wu CY (1995 )Arbitrary surface flank milling of fan, compressor, and impeller blades. Trans ASME J Eng Gas Turbine Power 117(3)534–539Google Scholar
  4. 4.
    Youn JW, Jun Y, Park S (2003)Interference-free tool path generation in five-axis machining of a marine propeller. Int J Prod Res 41(18):4383–4402CrossRefGoogle Scholar
  5. 5.
    Park S, Chang MH, Ju JH (1999) Tool path generation for five-axis machining of impellers. Int J Prod Res 37(16):3659–3669zbMATHCrossRefGoogle Scholar
  6. 6.
    Young HT, Chuang LC (2003) An integrated machining approach for a centrifugal impeller. Int J Adv Manuf Technol 21(8):556–563CrossRefGoogle Scholar
  7. 7.
    Chu CH, Song MC, Luo K (in press) Computer aided parametric design for 3D tire mold production. Comput IndGoogle Scholar
  8. 8.
    Gian R, Lin TW, Lin AC (2003) Planning of tool orientation for five-axis cavity machining. Int J Adv Manuf Technol 22(1–2):150–161Google Scholar
  9. 9.
    Lee RS, Lee JN (2001) A new tool-path generation method using a cylindrical end mill for 5-axis machining of a spatial cam with a conical meshing element. Int J Adv Manuf Technol 18(9):615–623CrossRefGoogle Scholar
  10. 10.
    Choi BK, Park JW, Jun CS (1993) Cutter-location data optimization in 5-axis surface machining. Comput-Aided Des 25(6):377–386Google Scholar
  11. 11.
    Li SX, Jerard RB (1994) 5-Axis machining of sculptured surfaces with a flat-end cutter. Comput-Aided Des 26(3):165–178Google Scholar
  12. 12.
    Henning H (1975) Fünfachsiges NC-Fräsen Gekrümmter Flächen. Dissertation, Univ Stuttgart, GermanyGoogle Scholar
  13. 13.
    Lee YS (1997) Admissible tool orientation control of gouging avoidance for 5-axis complex surface machining. Comput-Aided Des 29(7):507–521Google Scholar
  14. 14.
    Chu CH, Chang HJ, Lin CK (1996) Avoidance of tool interference in five-axis milling. Proc Fourth International Conference on Automation Technology, Hsinchu, Taiwan 1:339–346Google Scholar
  15. 15.
    You CF, Chu CH (1997) Tool-path verification in five-axis machining of sculptured surfaces. Int J Adv Manuf Technol 13(4):248–255CrossRefGoogle Scholar
  16. 16.
    Bedi S, Mann S, Menzel C (2003) Flank milling with flat end milling cutters. Comput-Aided Des 35:293–300Google Scholar
  17. 17.
    Menzel C, Bedi S, Mann S (2004) Triple tangent flank milling of ruled surfaces. Comput-Aided Des 36:289–296Google Scholar
  18. 18.
    Liu XW (1995) Five-axis NC cylindrical milling of sculptured surfaces. Comput-Aided Des 27(12):87–94Google Scholar
  19. 19.
    Bohez ELJ, Ranjith Senadhera SD, Pole K, Duflou JR, Tar T (1997) A geometric modeling and five-axis machining algorithm for centrifugal impellers. J Manuf Syst 16(6):422–436CrossRefGoogle Scholar
  20. 20.
    Lartigue C, Duc E, Affouard A (2003) Tool path deformation in 5-axis flank milling using envelope surface. Comput-Aided Des 35:375–382Google Scholar
  21. 21.
    Tsay DM, Her MJ (2001) Accurate 5-axis machining of twisted ruled surfaces. ASME J Manuf Sci Eng 123:731–738CrossRefGoogle Scholar
  22. 22.
    Tsay DM, Chen HC, Her MJ (2002) A study on five-axis flank machining of centrifugal compressor impellers. ASME J Eng Gas Turbines Power 124:177–181CrossRefGoogle Scholar
  23. 23.
    Farin D (1997) Curves and surfaces for computer aided geometric design. Academic, BostonGoogle Scholar
  24. 24.
    Chen JT, Chu CH (2004) Automatic avoidance of local tool interference in five-axis flank milling. The 21st National Conference on Mechanical Engineering, The Chinese Society of Mechanical Engineers, Kaohsiung, TaiwanGoogle Scholar
  25. 25.
    Mortenson M (1985) Geometric modeling. Wiley, New YorkGoogle Scholar
  26. 26.
    Chu CH, Séquin CH (2002) Developable Bézier Patches: Properties and Design. Comput Aided Des 34(7):511–527CrossRefGoogle Scholar
  27. 27.
    Chu CH, Chen JT (2004) Geometric design of developable composite Bézier surfaces. CAD, Pattaya Beach, ThailandGoogle Scholar
  28. 28.
    Chu CH, Chen JT (2005) Five-axix flank machining of ruled surfaces with developabled surface approximation. CAD and Graphics, Hong KongGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Chih-Hsing Chu
    • 1
  • Jang-Ting Chen
    • 1
  1. 1.Department of Industrial Engineering and Engineering ManagementNational Tsing-Hua UniversityHsinchuTaiwan

Personalised recommendations