An analytical model of the laser clad geometry

  • C. Lalas
  • K. Tsirbas
  • K. Salonitis
  • G. Chryssolouris
Original Article

Abstract

In this paper an analytical approach to the laser cladding process has been developed and discussed. This approach has taken into account the process speed and feed rate of the powder being supplied for the estimation of clad geometry. The surface tension between the added material and the substrate is used primarily for the calculation of the clad characteristics. The theoretical results are discussed and compared with experimental data. The model is capable of predicting the clad width and depth with reasonable accuracy at low and medium process speeds.

Keywords

Laser Cladding Modeling Experimentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chryssolouris G (1991) Laser machining-theory and practice. Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. 2.
    Chryssolouris G (1992) Manufacturing systems-theory and practice. Springer, Berlin Heidelberg New YorkGoogle Scholar
  3. 3.
    Steen WM (1982) Laser cladding, alloying and melting. In: Levitt M, Belforte D (eds) Industrial laser handbook. Springer, Berlin Heidelberg New York, pp 158–171Google Scholar
  4. 4.
    Yellup JM (1995) Laser cladding using the powder blowing technique. Surf Coat Tech 71:121–128CrossRefGoogle Scholar
  5. 5.
    Chryssolouris G, Zannis S, Tsirbas K, Lalas C (2001) On laser cladding. Proceedings of the 34th international CIRP seminar on manufacturing systems, Athens, Greece, pp 371–380Google Scholar
  6. 6.
    Konig WE, Rozsnoki L, Kirner P (1992) Laser beam surface treatment-is wear no longer the bug bear of old? In: Mordike BL (ed) 4th European conference of laser treatment of materials, Göttingen, pp 217–222Google Scholar
  7. 7.
    Picasso M, Marsden CF, Wagniere JD, Frenk A, Rappaz M (1994) A simple but realistic model for laser cladding. Metall Mater Trans B (25B):281–291Google Scholar
  8. 8.
    Bamberger M, Kaplan WD, Medres B, Shepeleva L (1998) Calculation of process parameters for laser alloying and cladding. J Laser Appl 10(1):29–33Google Scholar
  9. 9.
    Yevko V, Park CB, Zak G, Coyle TW, Benhabib B (1998) Cladding formation in laser-beam fusion of metal power. Rapid Prototyping J 4(4):168–184CrossRefGoogle Scholar
  10. 10.
    Jouvard JM, Grevey DF, Lemoine F, Vannes AB (1997) Continuous wave Nd:YAG laser cladding modeling: a physical study of track creation during low power processing. J Laser Appl 9:43–50Google Scholar
  11. 11.
    Toyserkani E, Khajepour A, Corbin S (2003) Three-dimensional finite element modeling of laser cladding by powder injection: effects of powder feedrate and travel speed on the process. J Laser Appl 15(3):153–160CrossRefGoogle Scholar
  12. 12.
    Toyserkani E, Khajepour A, Corbin S (2004) 3-D finite element modeling of laser cladding by powder injection: effects of laser pulse shaping on the process. Opt Laser Eng 41:849–869CrossRefGoogle Scholar
  13. 13.
    Toyserkani E, Khajepour A, Corbin S (2002) Application of experimental-based modeling to laser cladding. J Laser Appl 14(3):165–173CrossRefGoogle Scholar
  14. 14.
    Cho C, Zhao G, Kwak S-Y, Kim CB (2004) Computational mechanics of laser cladding process. J Mater Process Tech 153–154:494–500CrossRefGoogle Scholar
  15. 15.
    Zhao G, Cho C, Kim J-D (2003) Application of 3-D finite element method using Langrangian formulation to dilution control in laser cladding process. Int J Mech Sci 45:777–796CrossRefMATHGoogle Scholar
  16. 16.
    Liu J, Li L (2005) Study on cross-section clad profile in coaxial single-pass cladding with a low-power laser. Opt Laser Technol 37:478–482CrossRefGoogle Scholar
  17. 17.
    Palumbo G, Pinto S, Tricarico L (2004) Numerical and finite element investigation on laser cladding treatment of ring geometries. J Mater Process Tech 155–156:1443–1450CrossRefGoogle Scholar
  18. 18.
    Lin J (1999) Temperature analysis of the powder streams in coaxial laser cladding. Opt Laser Technol 31:565–570CrossRefGoogle Scholar
  19. 19.
    Lin J (1999) A simple model of powder catchment in coaxial laser cladding. Opt Laser Technol 31:223–238Google Scholar
  20. 20.
    Lin J (2000) Numerical simulation of the focused powder streams in coaxial laser cladding. J Mater Process Tech 105:17–23CrossRefGoogle Scholar
  21. 21.
    Liu C-Y, Lin J (2003) Thermal processes of a powder particle in coaxial cladding. Opt Laser Technol 35:81–86CrossRefMathSciNetGoogle Scholar
  22. 22.
    Fu Y, Loredo A, Martin B, Vannes AB (2002) A theoretical model for laser and powder particles interaction during laser cladding. J Mater Process Tech 128:106–112CrossRefGoogle Scholar
  23. 23.
    Gedda H, Powell J, Wahlstrom G, Li W-B, Engstrom H, Magnusson C (2002) Energy redistribution during CO2 laser cladding. J Laser Appl 14(2):78–82CrossRefGoogle Scholar
  24. 24.
    Chryssolouris G, Zannis S, Tsirbas K, Lalas C (2002) An experimental investigation of laser cladding. Proceedings of the 52nd CIRP general assembly, August, San Sebastian, SpainGoogle Scholar
  25. 25.
    Spaepen F (1996) Substrate curvature resulting from the capillary forces of a liquid drop. J Mech Phys Solids 44(5):675–681CrossRefGoogle Scholar
  26. 26.
    Cammarata RC (1997) Surface and interface stress effects on interfacial and nanostructured materials. Mater Sci Eng A 237:180–184CrossRefGoogle Scholar
  27. 27.
    Van De Mark MR (1996) Formula for good wetting. In: Coating R&D notebook. Industrial paint & powder. http://www.ippmagazine.com/articles/1996/columnist96/296col3.htm. Cited 13 January 2006
  28. 28.
    Holman JP (1997) Heat transfer, 8th edn. McGraw-Hill, New YorkGoogle Scholar
  29. 29.
    Vander Voort GF (2000) Metallography-principles and practice. ASM International, Materials Park, OHGoogle Scholar
  30. 30.
    Kelly G, Nagarathnam K, Mazumber J (1998) Laser cladding of cast aluminium-silicon alloys for improved dry sliding wear resistance. J Laser Appl 10(2):45–54CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2006

Authors and Affiliations

  • C. Lalas
    • 1
  • K. Tsirbas
    • 1
  • K. Salonitis
    • 1
  • G. Chryssolouris
    • 1
  1. 1.Laboratory for Manufacturing Systems and Automation, Department of Mechanical Engineering and AeronauticsUniversity of PatrasPatrasGreece

Personalised recommendations