Digital enterprise technology in production networks

  • P. G. Maropoulos
  • D. G. Bramall
  • P. Chapman
  • W. M. Cheung
  • K. R. McKay
  • B. C. Rogers
Original Article

Abstract

Enterprises organised as distributed production networks face challenges related to the planning and synchronisation of their manufacturing operations, and of controlling the quality, cost and production time of products under development. Digital enterprise technology (DET) is a framework for new technologies which can shorten product development and realisation, by estimating and therefore controlling quality, cost and delivery factors for products at an early stage in their lifecycle. DET can also be deployed to facilitate planning and synchronisation of work across an extended enterprise. Particularly for high value and high complexity products, these techniques represent an emergent synthesis of strategies for design, manufacture and product lifecycle management.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maropoulos PG (2003) Digital enterprise technology—defining perspectives and research priorities. Int J Comput Integr Manuf 16(7–8):467–478CrossRefGoogle Scholar
  2. 2.
    Wiendahl HP, Lutz S (2002) Production in networks. Ann CIRP 51(2):573–586CrossRefGoogle Scholar
  3. 3.
    Maropoulos PG (1995) A novel process planning architecture for product based manufacture. Proc IMechE Part B J Eng Manuf 209(4):267–276Google Scholar
  4. 4.
    Bradley HD, Maropoulos PG (1998) A relation–based product model for computer supported early design assessment. J Mater Process Technol 76(1–3):88–95CrossRefGoogle Scholar
  5. 5.
    Maropoulos PG, Bramall DG, McKay KR, Rogers B, Chapman P (2003) An aggregate resource model for the provision of dynamic “resource aware” planning. Proc IMechE Part B J Eng Manuf 217(10):1471–1480CrossRefGoogle Scholar
  6. 6.
    Maropoulos PG, McKay K, Bramall DG, Rogers B, Chapman P (2003) Dynamic and distributed early planning assessment by a hybrid simulated annealing and greedy algorithm. Proc IMechE Part B J Eng Manuf 217(10):1429–1442CrossRefGoogle Scholar
  7. 7.
    Kirkpatrick S, Gelatt CD Jr, Vecci MP (1983) Optimization by simulated annealing. Science 220(4598):671-680MathSciNetCrossRefGoogle Scholar
  8. 8.
    Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison–Wesley, Reading, MAMATHGoogle Scholar
  9. 9.
    Giarratano JC, Riley G (1993) CLIPS Reference Manual Version 6.0:Volumes 1 & 2, NASA Lyndon B. Johnson Space Center Information Center, Information Systems Directorate, Software Technology Branch, USAGoogle Scholar
  10. 10.
    Forgy CL (1982) Rete: a fast algorithm for the many pattern/many object pattern match problem. Artif Intell 19(1):17–37CrossRefGoogle Scholar
  11. 11.
    Coffman EG, Denning PJ (1973) Operating systems theory. Prentice-Hall, Englewood Cliffs, NJ, ISBN 0-13-637868-4Google Scholar
  12. 12.
    Basu A, Blanning RW (2000) A formal approach to workflow analysis. Inf Syst Res 11(1):17-20CrossRefGoogle Scholar
  13. 13.
    Fischer L (ed) (2004) The workflow handbook 2004. Future Strategies, Lighthouse Point, FL, ISBN 0–9703509–6–1Google Scholar
  14. 14.
    Schmidt K (1997) Of maps and scripts: the status of formal contracts in cooperative work. In: Proceedings of GROUP97, Phoenix, AR, pp 138–147Google Scholar

Copyright information

© Springer-Verlag London Limited 2005

Authors and Affiliations

  • P. G. Maropoulos
    • 1
  • D. G. Bramall
    • 1
  • P. Chapman
    • 1
  • W. M. Cheung
    • 1
  • K. R. McKay
    • 1
  • B. C. Rogers
    • 1
  1. 1.School of EngineeringUniversity of DurhamDurhamUK

Personalised recommendations