The characterisation of the dimensional change of the Z-axis in NC turning

  • S. Segonds
  • Y. Landon
  • M. Mousseigne
  • P. Lagarrigue
Original Article


Manufacturing high value-added parts often requires a considerable amount of time spent on machining, during which the machine’s dimensional characteristics may change. During this study, we endeavoured to characterise the dimensional change of the slideways and ball screw spindle of the Z-axis on an NC lathe. Indeed, such changes are harmful when it comes to obtaining precise dimensions along the Z direction of the lathe. Firstly, we specified the context in which the study was to be conducted and the problem we were confronted with. We then conducted an experimental study to highlight the parameters having an influence on the dimensional changes of the Z-axis. We then implemented modelling to generate a prediction model for this axis’s behaviour during machining. We were thus able to compensate for such errors by inserting programmed offsets, calculated from the prediction model [1]. We rounded off our study by milling a series of parts using a corrected NC programme that included a compensation for the dimensional change of the Z-axis in order to validate our approach.


CNC lathe Z-axis Machining scatterings Dimensional change Compensation 


  1. 1.
    Dessein G, Redonnet JM, Lagarrigue P, Rubio W (1998) Correction des trajectoires d’une machine-outil à commande numérique par une qualification des dispersions selon l’usinage. IDMME 98, Compiègne, May 1998Google Scholar
  2. 2.
    Kim KI, Kim K (1995) A new machine strategy for sculptured surfaces using offset surface. Int J Prod Res 33(6):1683–1697Google Scholar
  3. 3.
    Duc E, Lartigue C, Thiebault F (1998) A test part for the machining of free-form surfaces. In: Proceedings of the International Seminar on Improving Machine Tool Performance, San Sebastian, Spain, July 1998Google Scholar
  4. 4.
    Pruvot F (1993) Conception et calcul des machines outils, vol.1. Presses Polytechniques et Universitaires RomandesGoogle Scholar
  5. 5.
    Ceretti E, Lazzaroni C, Menegardo C, Altan T (2000) Turning simulations using a three dimensional FEM code. J Mater Process Technol 98:99–103CrossRefGoogle Scholar
  6. 6.
    Kim SK, Cho DW (1997) Real-time estimation of temperature distribution in a ball-screw system. Int J Mach Tool Manufact 37(4):451–464CrossRefGoogle Scholar
  7. 7.
    Segonds S, Lagarrigue P, Redonnet JM, Rubio W (2001) Compensation for machining defects due to spindle dilatation. Int J Mach Tool Manufact 41:1439–1454CrossRefGoogle Scholar
  8. 8.
    Pillet M (1997) Les plans d’expérience par la méthode Taguchi. Les éditions d’organisation, ParisGoogle Scholar
  9. 9.
    Sado G, Sado M-C (1991) Les plans d’expérience, de l’expérimentation à l’assurance qualité. Ed. afnor technique, ParisGoogle Scholar
  10. 10.
    Huang S-C (1995) Analysis of a model to forecast thermal deformation of a ball-screw feed drive system. Int J Mach Tool Manufact 35(8):1099–1104CrossRefGoogle Scholar
  11. 11.
    Yun WS, Kim SK and Cho DW (1999) Thermal error analysis for a C.N.C. lathe feed drive system. Int J Mach Tool Manufact 39:1087–1101CrossRefGoogle Scholar
  12. 12.
    Lo C-H, Yuan J and Ni J (1995) An application of real-time error compensation on a turning center. Int J Mach Tool Manufact 35(12):1669–1682CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2004

Authors and Affiliations

  • S. Segonds
    • 1
  • Y. Landon
    • 1
  • M. Mousseigne
    • 1
  • P. Lagarrigue
    • 1
  1. 1.Laboratoire Génie Mécanique de Toulouse—Bât. 3R1Toulouse Cedex 4France

Personalised recommendations