The Annals of Regional Science

, Volume 36, Issue 1, pp 145–163 | Cite as

The propagation of uncertainty through travel demand models: An exploratory analysis

  • Yong Zhao
  • Kara Maria Kockelman

Abstract.

The future operations of transportation systems involve a lot of uncertainty – in both inputs and model parameters. This work investigates the stability of contemporary transport demand model outputs by quantifying the variability in model inputs, such as zonal socioeconomic data and trip generation rates, and simulating the propagation of their variation through a series of common demand models over a 25-zone network. The results suggest that uncertainty is likely to compound itself – rather than attenuate – over a series of models. Mispredictions at early stages (e.g., trip generation) in multi-stage models appear to amplify across later stages. While this effect may be counteracted by equilibrium assignment of traffic flows across a network, predicted traffic flows are highly and positively correlated.

JEL classification: C15 D80 R41 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Yong Zhao
    • 1
  • Kara Maria Kockelman
    • 1
  1. 1.The University of Texas at Austin, 6.9 E. Cockrell Jr. Hall, Austin, TX 78712-1076, USA (e-mail: yzhao@mail.utexas.edu; kkockelm@mail.utexas.edu)US

Personalised recommendations