The Annals of Regional Science

, Volume 48, Issue 1, pp 33–44 | Cite as

Spatial Cournot competition and transportation costs in a circular city

  • Toshihiro Matsumura
  • Noriaki Matsushima
Original Paper


We reconsider a Cournot spatial competition in a circular city. We discuss an oligopoly model. We find that two equilibria exist if the transport cost function is nonlinear in distance, while a continuum of equilibria exists if it is linear. Thus, the result of the real indeterminacy of equilibria in the linear transport cost case is knife edge.

JEL Classification

R32 L13 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson SP, Neven DJ (1991) Cournot competition yields spatial agglomeration. Int Econ Rev 32(4): 793–808CrossRefGoogle Scholar
  2. Brander JA, Zhang A (1990) Market conduct in the airline industry: an empirical investigation. Rand J Econ 21(4): 567–583CrossRefGoogle Scholar
  3. Chen C-S, Lai F-C (2008) Location choice and optimal zoning under Cournot competition. Reg Sci Urban Econ 38(2): 119–126CrossRefGoogle Scholar
  4. Dorta-González P, Santos-Peñate DR, Suárez-Vega R (2005) Spatial competition in networks under delivered pricing. Pap Reg Sci 84(2): 271–280CrossRefGoogle Scholar
  5. Gupta B (2004) Spatial Cournot competition in a circular city with transport cost differentials. Econ Bull 4(15): 1–6Google Scholar
  6. Gupta B, Lai F-C, Pal D, Sarkar J, Yu C-M (2004) Where to locate in a circular city?. Int J Ind Organ 22(6): 759–782CrossRefGoogle Scholar
  7. Gupta B, Pal D, Sarkar J (2006) Product differentiation and location choice in a circular city. J Reg Sci 46(2): 313–331CrossRefGoogle Scholar
  8. Hamilton JH, Thisse J-F, Weskamp A (1989) Spatial discrimination: Bertrand vs. Cournot in a model of location choice. Reg Sci Urban Econ 19(1): 87–102CrossRefGoogle Scholar
  9. Hotelling H (1929) Stability in competition. Econ J 39: 41–57CrossRefGoogle Scholar
  10. Matsumura T (2003) Consumer-benefiting exclusive territories. Can J Econ 36(4): 1007–1025CrossRefGoogle Scholar
  11. Matsumura T, Ohkawa T, Shimizu D (2005) Partial agglomeration or dispersion in spatial Cournot competition. South Econ J 72(1): 224–235CrossRefGoogle Scholar
  12. Matsumura T, Shimizu D (2006) Cournot and Bertrand in shipping models with circular markets. Pap Reg Sci 85(4): 585–598CrossRefGoogle Scholar
  13. Matsumura T, Shimizu D (2008) A noncooperative shipping Cournot duopoly with linear-quadratic transport costs and circular space. Jpn Econ Rev 59(4): 498–518CrossRefGoogle Scholar
  14. Matsushima N (2001a) Cournot competition and spatial agglomeration revisited. Econ Lett 73(2): 175–177CrossRefGoogle Scholar
  15. Matsushima N (2001b) Horizontal mergers and merger waves in a location model. Aust Econ Pap 40(3): 263–286CrossRefGoogle Scholar
  16. Matsushima N, Matsumura T (2003) Mixed oligopoly and spatial agglomeration. Can J Econ 36(1): 62–87CrossRefGoogle Scholar
  17. Matsushima N, Matsumura T (2006) Mixed oligopoly, foreign firms, and location choice. Reg Sci Urban Econ 36(6): 753–772CrossRefGoogle Scholar
  18. Nikae D, Ikeda T (2006) Exclusive territories in the presence of upstream competition. Econ Bull 4(26): 1–6Google Scholar
  19. Pal D (1998) Does Cournot competition yield spatial agglomeration?. Econ Lett 60(1): 49–53CrossRefGoogle Scholar
  20. Shimizu D (2002) Product differentiation in spatial Cournot markets. Econ Lett 76(3): 317–322CrossRefGoogle Scholar
  21. Sun C-H (2009) Spatial Cournot competition in a circular city with directional delivery constraints. Annals of Regional Science. doi: 10.1007/s00168-009-0294-7
  22. Yu C-M, Lai F-C (2003) Cournot competition in spatial markets: Some further results. Pap Reg Sci 82(4): 569–580CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute of Social ScienceUniversity of TokyoTokyoJapan
  2. 2.Institute of Social and Economic ResearchOsaka UniversityOsakaJapan

Personalised recommendations