The Annals of Regional Science

, Volume 47, Issue 2, pp 419–436 | Cite as

A spatial Mankiw–Romer–Weil model: theory and evidence

  • Manfred M. FischerEmail author
Special Issue Paper


This paper presents a theoretical growth model that extends the Mankiw–Romer–Weil (MRW) model by accounting for technological interdependence among regional economies. Interdependence is assumed to work through spatial externalities caused by disembodied knowledge diffusion. The transition from theory to econometrics leads to a reduced-form empirical spatial Durbin model specification that explains the variation in regional levels of per worker output at steady state. A system of 198 regions across 22 European countries over the period from 1995 to 2004 is used to empirically test the model. Testing is performed by assessing the importance of cross-region technological interdependence and measuring direct and indirect (spillover) effects of the MRW determinants on regional output.

JEL Classification

C31 O18 O47 R11 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anselin L (1988) Spatial econometrics: methods and models. Kluwer, DordrechtGoogle Scholar
  2. Anselin L, Bera AK (1998) Spatial dependence in linear regression models with an introduction to spatial econometrics. In: Ullah A, Giles D (eds) Handbook of applied economic statistics. Marcel Dekker, New York, pp 237–289Google Scholar
  3. Benhabib J, Spiegel MM (1994) The role of human capital in economic development. Evidence from aggregate cross-country data. J Monet Econ 34(2): 143–173CrossRefGoogle Scholar
  4. Cliff A, Ord JK (1981) Spatial processes: models and applications. Pion, LondonGoogle Scholar
  5. Davidson R, MacKinnon J (1993) Estimation and inference in econometrics. Oxford University Press, New YorkGoogle Scholar
  6. Durlauf S (2001) Manifesto for a growth econometrics. J Econom 100(1): 65–69CrossRefGoogle Scholar
  7. Durlauf SN, Johnson PA (1995) Multiple regimes and cross-country growth behaviour. J Appl Econom 10(4): 365–384CrossRefGoogle Scholar
  8. Durlauf SN, Quah DT (1999) The new empirics of economic growth. In: Taylor JB, Woodford M (eds) Handbook of macroeconomics, vol 1. Elsevier, Amsterdam, pp 235–308Google Scholar
  9. Ertur C, Koch W (2006) Convergence, human capital and international spillovers. Working paper, LEG 2006-03. Université de Bourgogne, FranceGoogle Scholar
  10. Ertur C, Koch W (2007) Growth, technological interdependence and spatial externalities: theory and evidence. J Appl Econom 22(6): 1033–1062CrossRefGoogle Scholar
  11. Ertur C, Koch W (2008) The role of human capital and technological interdependence in growth and convergence processes: international evidence. Working paper, LEG 2008-12. Université de Bourgogne, FranceGoogle Scholar
  12. Fingleton B (2001) Equilibrium and economic growth: spatial econometric models and simulations. J Reg Sci 41(1): 117–147CrossRefGoogle Scholar
  13. Fingleton B, Fischer MM (2009) Neoclassical theory versus new economic geography: competing explanations of cross-regional variation in economic development. Ann Reg Sci 43. doi: 10.1007/s00168-008-0278-z
  14. Fischer MM, Stirböck C (2006) Pan-European regional income growth and club-convergence. Ann Reg Sci 40(4): 693–721CrossRefGoogle Scholar
  15. Fischer MM, Varga A (2003) Spatial knowledge spillovers and university research. Ann Reg Sci 37(2): 303–322CrossRefGoogle Scholar
  16. Fischer MM, Scherngell T, Jansenberger E (2006) The geography of knowledge spillovers between high-technology firms in Europe. Geogr Anal 38(3): 288–309CrossRefGoogle Scholar
  17. Fischer MM, Scherngell T, Reismann M (2009) Knowledge spillovers and total factor productivity. Evidence using a spatial panel data model. Geogr Anal 41(2): 204–220CrossRefGoogle Scholar
  18. Getis A (2005) Spatial pattern analysis. In: Kempp-Leonard K (eds) Encyclopedia of social measurement. Academic Press, Amsterdam, pp 627–632CrossRefGoogle Scholar
  19. Griffith DA (1995) Some guidelines for specifying the geographic weights matrix contained in spatial statistics models. In: Arlinghaus SL, Griffith DA, Arlinghaus WC, Drake WD, Nystrom JD (eds) Practical handbook of spatial analysis. CRC Press, Boca Raton, pp 65–82Google Scholar
  20. Griliches Z (2000) R&D, education, and productivity. A retrospective. Harvard University Press, CambridgeGoogle Scholar
  21. Grossman GM, Helpman E (1991) Innovation and growth in the global economy. MIT Press, CambridgeGoogle Scholar
  22. Hall RE, Jones C (1999) Why do some countries produce so much more output per worker than others. Q J Econ 114(1): 83–116CrossRefGoogle Scholar
  23. Islam N (1995) Growth empirics: a panel data approach. Q J Econ 110(4): 1127–1170CrossRefGoogle Scholar
  24. Keller W (2002) Geographic localization of international technology diffusion. Am Econ Rev 92(1): 120–142CrossRefGoogle Scholar
  25. LeSage JP, Fischer MM (2008) Spatial growth regressions: model specification, estimation and interpretation. Spatial Econ Anal 3(3): 275–304CrossRefGoogle Scholar
  26. LeSage JP, Pace RK (2009) Introduction to spatial econometrics. CRC Press, Boca RatonCrossRefGoogle Scholar
  27. LeSage JP, Pace RK (2010) Spatial econometric models. In: Fischer MM, Getis A (eds) Handbook of applied spatial data analysis. Springer, Berlin, pp 359–380Google Scholar
  28. Levine R, Renelt D (1992) A sensitivity analysis of cross-country growth regressions. Am Econ Rev 82(4): 942–963Google Scholar
  29. López-Bazo E, Fingleton B (2006) Empirical growth models with spatial effects. Papers Reg Sci 85(2): 177–198CrossRefGoogle Scholar
  30. López-Bazo E, Vayá E, Artís M (2004) Regional externalities and growth: evidence from European regions. J Reg Sci 44(1): 43–73CrossRefGoogle Scholar
  31. Mankiw NE, Romer D, Weil DN (1992) A contribution to the empirics of economic growth. Q J Econ 107(2): 407–437CrossRefGoogle Scholar
  32. Ord JK (1975) Estimation methods for models of spatial interaction. J Am Stat Assoc 70(349): 120–126CrossRefGoogle Scholar
  33. Pritchett L (2001) Where has all the education gone. World Bank Econ Rev 15(3): 367–391CrossRefGoogle Scholar
  34. Romer PM (1986) Increasing returns and long run growth. J Political Econ 94(5): 1002–1037CrossRefGoogle Scholar
  35. Stiroh KJ (2003) Growth and innovation in the new economy. In: Jones DC (eds) New economy handbook. Academic Press, Amsterdam, pp 723–751Google Scholar
  36. Temple JRW (1998) Robustness tests of the augmented Solow model. J Appl Econom 13(4): 361–375CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute for Economic Geography and GIScienceVienna University of Economics and BusinessViennaAustria

Personalised recommendations