The Annals of Regional Science

, Volume 43, Issue 2, pp 473–490 | Cite as

Finite sample properties of alternative GMM estimators for random effects models with spatially correlated errors

Original Paper


For panel data models with error components that are spatially correlated, the finite sample properties of alternative generalized method of moments (GMM) estimators are determined. We suggest using a continuously updated GMM estimator which is invariant to curvature altering transformations and which should improve small sample efficiency. A Monte Carlo study using a wide range of settings compares the small sample efficiency of various GMM approaches and the maximum likelihood estimator (MLE). The GMM estimators turn out to perform comparably to the MLE approach and even outperform the latter for complex weighting matrices and non-normally distributed errors.

JEL Classification

C21 C23 H77 R15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

168_2008_222_MOESM1_ESM.eps (52 kb)
ESM 1 (EPS 52 kb)
168_2008_222_MOESM2_ESM.eps (26 kb)
ESM 2 (EPS 27 kb)
168_2008_222_MOESM3_ESM.eps (51 kb)
ESM 3 (EPS 52 kb)
168_2008_222_MOESM4_ESM.eps (45 kb)
ESM 4 (EPS 45 kb)
168_2008_222_MOESM5_ESM.eps (51 kb)
ESM 5 (EPS 52 kb)
168_2008_222_MOESM6_ESM.eps (53 kb)
ESM 6 (EPS 54 kb)
168_2008_222_MOESM7_ESM.eps (52 kb)
ESM 7 (EPS 52 kb)
168_2008_222_MOESM8_ESM.eps (51 kb)
ESM 8 (EPS 52 kb)
168_2008_222_MOESM9_ESM.eps (52 kb)
ESM 9 (EPS 52 kb)
168_2008_222_MOESM10_ESM.eps (52 kb)
ESM 10 (EPS 52 kb)
168_2008_222_MOESM11_ESM.eps (51 kb)
ESM 11 (EPS 52 kb)
168_2008_222_MOESM12_ESM.eps (51 kb)
ESM 12 (EPS 52 kb)
168_2008_222_MOESM13_ESM.eps (52 kb)
ESM 13 (EPS 52 kb)
168_2008_222_MOESM14_ESM.eps (51 kb)
ESM 14 (EPS 52 kb)


  1. Anselin L (1988). Spatial econometrics: methods and models. Kluwer, Boston Google Scholar
  2. Anselin L, Florax R and Rey S (2004). Advances in spatial econometrics. Springer, Berlin Google Scholar
  3. Baicker K (2005). The spillover effects of state spending. J Public Econ 89(2–3): 529–544 CrossRefGoogle Scholar
  4. Bonferroni C (1936). Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze 8: 3–62 Google Scholar
  5. Bordignon M, Cerniglia F and Revelli F (2003). In search of yardstick competition: a spatial analysis of italian municipality property tax setting. J Urban Econ 54(2): 199–217 CrossRefGoogle Scholar
  6. Cliff A and Ord J (1973). Spatial autocorrelation. Pion, London Google Scholar
  7. Cliff A and Ord J (1981). Spatial processes, models and applications. Pion, London Google Scholar
  8. Druska V and Horrace W (2004). Generalized moments estimation for spatial panel data: indonesian rice farming. Am J Agric Econ 86(1): 185–198 CrossRefGoogle Scholar
  9. Hall A (2005). Generalized method of moments. Oxford University Press, Oxford Google Scholar
  10. Hansen L (1982). Large sample properties of generalized method of moments estimators. Econometrica 50(4): 1029–1054 CrossRefGoogle Scholar
  11. Hansen L, Heaton J and Yaron A (1996). Finite-sample properties of some alternative GMM estimators. J Business Econ Statistics 14(3): 262–280 CrossRefGoogle Scholar
  12. Kapoor M, Kelejian H and Prucha I (2007). Panel data models with spatially correlated error components. J Econ 140(1): 97–130 Google Scholar
  13. Kelejian H and Prucha I (1999). A generalized moments estimator for the autoregressive parameter in a spatial model. Int Econ Rev 40(2): 509–533 CrossRefGoogle Scholar
  14. Kelejian H and Robinson D (1997). Infrastructure productivity estimation and its underlying econometric specifications. Papers Regional Sci 76(1): 115–131 Google Scholar
  15. Kelejian H and Robinson D (2000). Returns to investment in navigation infrastructure: an equilibrium approach. Ann Regional Sci 34(1): 83–108 CrossRefGoogle Scholar
  16. Pakes A and Pollard D (1989). Simulation and the asymptotics of optimization estimators. Econometrica 57(5): 1027–1057 CrossRefGoogle Scholar
  17. Patton M and McErlean S (2003). Spatial effects within the agricultural land market in northern Ireland. J Agric Econ 54(1): 35–54 CrossRefGoogle Scholar
  18. Rupasingha A, Goetz S, Debertin D and Pagoulatos A (2004). The environmental Kuznets curve for US counties: a spatial econometric analysis with extensions. Papers Regional Sci 83(2): 407–424 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Ifo Institute for Economic Research at the University of Munich and CESifoMunichGermany
  2. 2.Department of StatisticsUniversity of InnsbruckInnsbruckAustria

Personalised recommendations