The Annals of Regional Science

, Volume 42, Issue 1, pp 11–37 | Cite as

Comparing the input, output, and validation maps for several models of land change

  • Robert Gilmore PontiusJr
  • Wideke Boersma
  • Jean-Christophe Castella
  • Keith Clarke
  • Ton de Nijs
  • Charles Dietzel
  • Zengqiang Duan
  • Eric Fotsing
  • Noah Goldstein
  • Kasper Kok
  • Eric Koomen
  • Christopher D. Lippitt
  • William McConnell
  • Alias Mohd Sood
  • Bryan Pijanowski
  • Snehal Pithadia
  • Sean Sweeney
  • Tran Ngoc Trung
  • A. Tom Veldkamp
  • Peter H. Verburg
Special Issue Paper

Abstract

This paper applies methods of multiple resolution map comparison to quantify characteristics for 13 applications of 9 different popular peer-reviewed land change models. Each modeling application simulates change of land categories in raster maps from an initial time to a subsequent time. For each modeling application, the statistical methods compare: (1) a reference map of the initial time, (2) a reference map of the subsequent time, and (3) a prediction map of the subsequent time. The three possible two-map comparisons for each application characterize: (1) the dynamics of the landscape, (2) the behavior of the model, and (3) the accuracy of the prediction. The three-map comparison for each application specifies the amount of the prediction’s accuracy that is attributable to land persistence versus land change. Results show that the amount of error is larger than the amount of correctly predicted change for 12 of the 13 applications at the resolution of the raw data. The applications are summarized and compared using two statistics: the null resolution and the figure of merit. According to the figure of merit, the more accurate applications are the ones where the amount of observed net change in the reference maps is larger. This paper facilitates communication among land change modelers, because it illustrates the range of results for a variety of models using scientifically rigorous, generally applicable, and intellectually accessible statistical techniques.

JEL Classification

C52 C53 Q15 Q24 R14 R52 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batty M, Torrens PM (2005) Modeling and prediction in a complex world. Futures 37(7):745–766CrossRefGoogle Scholar
  2. Boissau S, Castella J-C (2003) Constructing a common representation of local institutions and land use systems through simulation-gaming and multi-agent modeling in rural areas of Northern Vietnam: the SAMBA-Week methodology. Simulat Gaming 34(3):342–347CrossRefGoogle Scholar
  3. Brown DG, Page S, Riolo R, Zellner M, Rand W (2005) Path dependence and the validation of agent-based spatial models of land use. Int J Geogr Informati Sci 19(2):153–174CrossRefGoogle Scholar
  4. Castella J-C, Boissau S, Trung TN, Quang DD (2005a) Agrarian transition and lowland-upland interactions in mountain areas in northern Vietnam: application of a multi-agent simulation model. Agric Syst 86(3):312–332CrossRefGoogle Scholar
  5. Castella J-C, Trung TN, Boissau S (2005b) Participatory simulation of land use changes in the Northern Mountains of Vietnam: the combined use of an agent-based model, a role-playing game, and a geographic information system. Ecol Soc 10(1):27Google Scholar
  6. de Koning GHJ, Verburg PH, Veldkamp TA, Fresco LO (1999) Multi-scale modelling of land use change dynamics in Ecuador. Agric Syst 61:77–93CrossRefGoogle Scholar
  7. de Nijs TCM, de Niet R, Crommentuijn L (2004) Constructing land-use maps of the Netherlands in 2030. J Environ Manag 72(1–2):35–42Google Scholar
  8. Dietzel CK, Clarke KC (2004) Spatial differences in multi-resolution urban automata modeling. Trans GIS 8:479–492CrossRefGoogle Scholar
  9. Duan Z, Verburg PH, Fengrong Z, Zhengrong Y (2004) Construction of a land-use change simulation model and its application in Haidian District, Beijing. Acta Geogra Sinica 59(6):1037–1046, (in Chinese)Google Scholar
  10. Engelen G, White R, de Nijs T (2003) The Environment Explorer: spatial support system for integrated assessment of socio-economic and environmental policies in the Netherlands. Integr Assess 4(2):97–105CrossRefGoogle Scholar
  11. Goldstein NC (2004) Brains vs. Brawn—comparative strategies for the calibration of a cellular automata-based urban growth model. In: Atkinson P, Foody G, Darby S, Wu F (eds). GeoDynamics. CRC, Boca Raton, pp 249–272Google Scholar
  12. Hilferink M, Rietveld P (1999) Land Use Scanner: an integrated GIS based model for long term projections of land use in urban and rural areas. J Geogr Syst 1(2):155–177CrossRefGoogle Scholar
  13. Jarosz L (1993) Defining and explaining tropical deforestation: shifting cultivation and population growth in colonial Madagascar (1896–1940). Econ Geogr 69(4):366–379CrossRefGoogle Scholar
  14. Klug W, Graziani G, Grippa G, Pierce D, Tassone C (eds) (1992) Evaluation of long range atmospheric transport models using environmental radioactivity data from the Chernobyl accident: the ATMES Report. Elsevier, London, 366 pagesGoogle Scholar
  15. Kok K, Veldkamp TA (2001) Evaluating impact of spatial scales on land use pattern analysis in Central America. Agric Ecosyst Environ 85(1–3):205–221CrossRefGoogle Scholar
  16. Kok K, Farrow A, Veldkamp TA, Verburg PH (2001) A method and application of multi-scale validation in spatial land use models. Agric Ecosyst Environ 85(1–3):223–238CrossRefGoogle Scholar
  17. Koomen E, Kuhlman T, Groen J, Bouwman A (2005) Simulating the future of agricultural land use in the Netherlands. Tijdschrift voor economische en sociale geografie 96(2):218–224, (in Dutch)CrossRefGoogle Scholar
  18. McConnell W, Sweeney SP, Mulley B (2004) Physical and social access to land: spatio-temporal patterns of agricultural expansion in Madagascar. Agric Ecosyst Environ 101(2–3):171–184CrossRefGoogle Scholar
  19. Perica S, Foufoula-Georgiou E (1996) Model for multiscale disaggregation of spatial rainfall based on coupling meteorological and scaling descriptions. J Geophys Res 101(D21): 26347–26361CrossRefGoogle Scholar
  20. Pijanowski BC, Gage SH, Long DT (2000) A Land Transformation Model: integrating policy, socioeconomics and environmental drivers using a geographic information system. In: Harris L, Sanderson J (eds) Landscape ecology: a top down approach. CRC Press, Boca Raton, pp 183–198Google Scholar
  21. Pijanowski BC, Brown DG, Manik G, Shellito B (2002) Using neural nets and GIS to forecast land use changes: a land transformation model. Computers Environ Urban Syst 26(6):553–575CrossRefGoogle Scholar
  22. Pijanowski BC, Pithadia S, Shellito BA, Alexandridis K (2005) Calibrating a neural network-based urban change model for two metropolitan areas of the Upper Midwest of the United States. Int J Geogr Informat Sci 19(2):197–215CrossRefGoogle Scholar
  23. Pontius Jr RG (2000) Quantification error versus location error in comparison of categorical maps. Photogramm Eng Remote Sensing 66(8):1011–1016Google Scholar
  24. Pontius Jr RG (2002) Statistical methods to partition effects of quantity and location during comparison of categorical maps at multiple resolutions. Photogramm Eng Remote Sensing 68(10):1041–1049Google Scholar
  25. Pontius Jr RG, Lippitt CD (2006) Can error explain map differences over time?. Cartogr Geogr Informat Sci 33(2):159–171CrossRefGoogle Scholar
  26. Pontius Jr RG, Malanson J (2005) Comparison of the structure and accuracy of two land change models. Int J Geogr Informat Sci 19(2):243–265CrossRefGoogle Scholar
  27. Pontius Jr RG, Spencer J (2005) Uncertainty in extrapolations of predictive land change models. Environ Plan B 32:211–230CrossRefGoogle Scholar
  28. Pontius Jr RG, Cornell J, Hall C (2001) Modeling the spatial pattern of land-use change with GEOMOD2: application and validation for Costa Rica. Agric Ecosyst Environ 85(1–3):191–203CrossRefGoogle Scholar
  29. Pontius Jr RG, Huffaker D, Denman K (2004a) Useful techniques of validation for spatially explicit land-change models. Ecol Model 179(4):445–461CrossRefGoogle Scholar
  30. Pontius Jr RG, Shusas E, McEachern M (2004b) Detecting important categorical land changes while accounting for persistence. Agric Ecosyst Environ 101(2–3):251–268CrossRefGoogle Scholar
  31. Pontius Jr RG, Cheuk ML (2006) A generalized cross-tabulation matrix for comparing soft-classified maps at multiple resolutions. Int J Geogr Informat Sci 20(1):1–30CrossRefGoogle Scholar
  32. Pontius Jr RG, Versluis AJ, Malizia NR (2006) Visualizing certainty of extrapolations from models of land change. Landscape Ecol 21(7):1151–1166CrossRefGoogle Scholar
  33. Schotten K, Goetgeluk R, Hilferink M, Rietveld P, Scholten H (2001) Residential construction, land use, and the environment: simulations for the Netherlands using a GIS-based land use model. Environ Model Assess 6:133–143CrossRefGoogle Scholar
  34. Silva EA, Clarke KC (2002) Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Computers Environ Urban Syst 26:525–552CrossRefGoogle Scholar
  35. Tan M, Li X, Xie H, Lu C (2005) Urban land expansion and arable land loss in China—a case study of Beijing-Tianjin-Hebei region. Land Use Policy 22(3):187–196CrossRefGoogle Scholar
  36. Veldkamp AT, Fresco L (1996) CLUE-CR: an integrated multi-scale model to simulate land use change scenarios in Costa Rica. Ecol Model 91:231–248CrossRefGoogle Scholar
  37. Verburg PH, Veldkamp TA (2004) Projecting land use transitions at forest fringes in the Philippines at two spatial scales. Landscape Ecol 19:77–98CrossRefGoogle Scholar
  38. Verburg PH, de Koning FGHJ, Kok K, Veldkamp TA, Fresco LO, Bouma J (1999) A spatial explicit allocation procedure for modelling the pattern of land use change based upon actual land use. Ecol Model 116:45–61CrossRefGoogle Scholar
  39. Verburg PH, Soepboer W, Veldkamp TA, Limpiada R, Espaldon V, Sharifah Mastura SA (2002) Modeling the Spatial Dynamics of Regional Land Use: the CLUE-S Model. Environ Manage 30(3):391–405CrossRefGoogle Scholar
  40. Verburg PH, de Nijs TCM, van Eck JR, Visser H, de Jong K (2004) A method to analyse neighbourhood characteristics of land use patterns. Computers Environ Urban Syst 28(6):667–690CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Robert Gilmore PontiusJr
    • 1
  • Wideke Boersma
    • 2
  • Jean-Christophe Castella
    • 3
  • Keith Clarke
    • 4
  • Ton de Nijs
    • 2
  • Charles Dietzel
    • 4
  • Zengqiang Duan
    • 5
  • Eric Fotsing
    • 6
  • Noah Goldstein
    • 4
  • Kasper Kok
    • 7
  • Eric Koomen
    • 8
  • Christopher D. Lippitt
    • 9
  • William McConnell
    • 10
  • Alias Mohd Sood
    • 11
  • Bryan Pijanowski
    • 12
  • Snehal Pithadia
    • 12
  • Sean Sweeney
    • 13
  • Tran Ngoc Trung
    • 14
  • A. Tom Veldkamp
    • 7
  • Peter H. Verburg
    • 7
  1. 1.Department of International Developement, Community and Environment, School of GeographyClark UniversityWorcesterUSA
  2. 2.Netherlands Environmental Assessment AgencyBilthovenThe Netherlands
  3. 3.Department of Social SciencesInstitut de Recherche pour le DéveloppementMontpellierFrance
  4. 4.Department of GeographyUniversity of CaliforniaSanta BarbaraUSA
  5. 5.Resources and Environment CollegeChina Agricultural UniversityBeijingChina
  6. 6.Computer Science Department of the University Institute of Technology at Bandjoun, and Center for Environmental Studies and Development in CameroonUniversity of DschangMarouaCameroon
  7. 7.Department of Environmental SciencesWageningen UniversityWageningenThe Netherlands
  8. 8.SPINlab, Department of Spatial EconomicsVrije UniversiteitAmsterdamThe Netherlands
  9. 9.School of GeographyClark UniversityWorcesterUSA
  10. 10.Center for Systems Integration & SustainabilityMichigan State UniversityEast LansingUSA
  11. 11.Forestry Department Peninsular MalaysiaKuala LumpurMalaysia
  12. 12.Department Forestry and Natural ResourcesPurdue UniversityWest LafayetteUSA
  13. 13.Center for the Study of Institutions, Populations, and Environmental ChangeIndiana UniversityBloomingtonUSA
  14. 14.Mountain Agrarian Systems ProgramVietnam Agricultural Sciences InstituteHanoiVietnam

Personalised recommendations