Skip to main content
Log in

High rate of return-to-play following meniscal allograft transplantation

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

In recent years, meniscal allograft transplantation (MAT) has been established as an effective option for young patients with symptomatic meniscus insufficiency with goals of functional improvement and joint preservation. Currently, there is little available information on return-to-play among patients in this cohort. The purpose of this study is to systematically review the literature and to evaluate the reported rehabilitation protocols, return-to-play guidelines, and subsequent rates of return-to-play following MAT.

Methods

MEDLINE, EMBASE and the Cochrane Library were searched according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to find studies on MAT. Studies were included if they reported return-to-play data or rehabilitation protocols. The rate and timing of return-to-play was assessed. The rehabilitation protocols were recorded, including time to start range of motion (ROM), full ROM, partial weight bearing (WB), and full WB.

Results

Overall, 67 studies met the inclusion criteria. Eleven studies, including 624 patients, reported 483 out of 624 patients (77.4%) returning to play, with 326 out of a reported 475 patients (68.6%) returning to the same/higher level, at a mean time to return of 9.0 months. There was significant variability in the reported rehabilitation protocols, but the most commonly reported time to begin ROM exercises was within the first week by 42 out of 60 studies (70.0%) and full ROM at 8 weeks by 18 out of 46 studies (39.1%). Partial weight bearing was most commonly begun in the fourth week by 20 out of 46 studies (43.5%), and for full WB the sixth week by 43 out of 65 studies (66.1%). Time elapsed following surgery was the most commonly reported criteria for return-to-play by 44 out of 48 studies (91.6%), with 6 months being the most common time point utilized by 17 out of 45 studies (37.8%). A small proportion of studies, 16 out of 48 (33.3%), advised against returning to competitive/collision sports altogether following MAT.

Conclusions

In conclusion, there is a high rate of return-to-play following MAT, with the majority of patients returning to the same level of play. However, there is significant variability in reported rehabilitation protocols, and poor-quality reporting in return-to-play criteria in the literature indicates a need for further study and the development of an evidence-based consensus statement for this patient population. The results from this study can be used to better inform patients on their expected outcomes and provide a more informed consent process.

Level of evidence

IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aagaard H, Jorgensen U, Bojsen-Moller F (1999) Reduced degenerative articular cartilage changes after meniscal allograft transplantation in sheep. Knee Surg Sports Traumatol Arthrosc 7:184–191

    CAS  Google Scholar 

  2. Abat F, Gelber PE, Erquicia JI, Tey M, Gonzalez-Lucena G, Monllau JC (2013) Prospective comparative study between two different fixation techniques in meniscal allograft transplantation. Knee Surg Sports Traumatol Arthrosc 21:1516–1522

    Google Scholar 

  3. Ahn JH, Kang HW, Yang TY, Lee JY (2016) Multivariate analysis of risk factors of graft extrusion after lateral meniscus allograft transplantation. Arthroscopy 32:1337–1345

    Google Scholar 

  4. Ahn JH, Kang HW, Yang TY, Lee JY (2016) Risk factors for radiographic progression of osteoarthritis after meniscus allograft transplantation. Arthroscopy 32:2539–2546

    Google Scholar 

  5. Alentorn-Geli E, Seijas Vazquez R, Garcia Balletbo M, Alvarez Diaz P, Steinbacher G, Cusco Segarra X et al (2011) Arthroscopic meniscal allograft transplantation without bone plugs. Knee Surg Sports Traumatol Arthrosc 19:174–182

    Google Scholar 

  6. Bai B, Shun H, Yin ZX, Liao ZW, Chen N (2012) Changes of contact pressure and area in patellofemoral joint after different meniscectomies. Int Orthop 36:987–991

    Google Scholar 

  7. Baratz ME, Fu FH, Mengato R (1986) Meniscal tears: the effect of meniscectomy and of repair on intraarticular contact areas and stress in the human knee. A preliminary report. Am J Sports Med 14:270–275

    CAS  Google Scholar 

  8. Bloch B, Asplin L, Smith N, Thompson P, Spalding T (2019) Higher survivorship following meniscal allograft transplantation in less worn knees justifies earlier referral for symptomatic patients: experience from 240 patients. Knee Surg Sports Traumatol Arthrosc 27:1891–1899

    Google Scholar 

  9. Chalmers PN, Karas V, Sherman SL, Cole BJ (2013) Return to high-level sport after meniscal allograft transplantation. Arthroscopy 29:539–544

    Google Scholar 

  10. Choi NH, Choi JK, Yang BS, Lee DH, Victoroff BN (2017) Lateral meniscal allograft transplant via a medial approach leads to less extrusion. Am J Sports Med 45:2791–2796

    Google Scholar 

  11. Cole BJ, Dennis MG, Lee SJ, Nho SJ, Kalsi RS, Hayden JK et al (2006) Prospective evaluation of allograft meniscus transplantation: a minimum 2-year follow-up. Am J Sports Med 34:919–927

    Google Scholar 

  12. Cummins JF, Mansour JN, Howe Z, Allan DG (1997) Meniscal transplantation and degenerative articular change: an experimental study in the rabbit. Arthroscopy 13:485–491

    CAS  Google Scholar 

  13. Elattar M, Dhollander A, Verdonk R, Almqvist KF, Verdonk P (2011) Twenty-six years of meniscal allograft transplantation: is it still experimental? A meta-analysis of 44 trials. Knee Surg Sports Traumatol Arthrosc 19:147–157

    Google Scholar 

  14. Gonzalez-Lucena G, Gelber PE, Pelfort X, Tey M, Monllau JC (2010) Meniscal allograft transplantation without bone blocks: a 5- to 8-year follow-up of 33 patients. Arthroscopy 26:1633–1640

    Google Scholar 

  15. Ha JK, Shim JC, Kim DW, Lee YS, Ra HJ, Kim JG (2010) Relationship between meniscal extrusion and various clinical findings after meniscus allograft transplantation. Am J Sports Med 38:2448–2455

    Google Scholar 

  16. Ha JK, Sung JH, Shim JC, Seo JG, Kim JG (2011) Medial meniscus allograft transplantation using a modified bone plug technique: clinical, radiologic, and arthroscopic results. Arthroscopy 27:944–950

    Google Scholar 

  17. Jang SH, Kim JG, Ha JG, Shim JC (2011) Reducing the size of the meniscal allograft decreases the percentage of extrusion after meniscal allograft transplantation. Arthroscopy 27:914–922

    Google Scholar 

  18. Jeon B, Kim JM, Kim JM, Lee CR, Kim KA, Bin SI (2015) An osteophyte in the tibial plateau is a risk factor for allograft extrusion after meniscus allograft transplantation. Am J Sports Med 43:1215–1221

    Google Scholar 

  19. Jiang D, Ao YF, Gong X, Wang YJ, Zheng ZZ, Yu JK (2014) Comparative study on immediate versus delayed meniscus allograft transplantation: 4- to 6-year follow-up. Am J Sports Med 42:2329–2337

    Google Scholar 

  20. Kempshall PJ, Parkinson B, Thomas M, Robb C, Standell H, Getgood A et al (2015) Outcome of meniscal allograft transplantation related to articular cartilage status: advanced chondral damage should not be a contraindication. Knee Surg Sports Traumatol Arthrosc 23:280–289

    CAS  Google Scholar 

  21. Kim JG, Lee YS, Lee SW, Kim YJ, Kong DH, Ko MS (2009) Arthroscopically assisted medial meniscal allograft transplantation using a modified bone plug to facilitate passage: surgical technique. J Knee Surg 22:259–263

    Google Scholar 

  22. Kim CW, Kim JM, Lee SH, Kim JH, Huang J, Kim KA et al (2011) Results of isolated lateral meniscus allograft transplantation: focus on objective evaluations with magnetic resonance imaging. Am J Sports Med 39:1960–1967

    Google Scholar 

  23. Kim JM, Lee BS, Kim KH, Kim KA, Bin SI (2012) Results of meniscus allograft transplantation using bone fixation: 110 cases with objective evaluation. Am J Sports Med 40:1027–1034

    Google Scholar 

  24. Kim JM, Kim JM, Jeon BS, Lee CR, Lim SJ, Kim KA et al (2015) Comparison of postoperative magnetic resonance imaging and second-look arthroscopy for evaluating meniscal allograft transplantation. Arthroscopy 31:859–866

    Google Scholar 

  25. Kim NK, Bin SI, Kim JM, Lee CR (2016) Does lateral meniscal allograft transplantation using the keyhole technique restore the anatomic location of the native lateral meniscus? Am J Sports Med 44:1744–1752

    Google Scholar 

  26. Kim NK, Bin SI, Kim JM, Lee CR, Kim JH (2017) Meniscal extrusion does not progress during the midterm follow-up period after lateral meniscal transplantation. Am J Sports Med 45:900–908

    Google Scholar 

  27. Kim JH, Lee S, Ha DH, Lee SM, Jung K, Choi W (2018) The effects of graft shrinkage and extrusion on early clinical outcomes after meniscal allograft transplantation. J Orthop Surg Res 13:181

    Google Scholar 

  28. Koh YG, Kim YS, Kwon OR, Heo DB, Tak DH (2018) Comparative matched-pair analysis of keyhole bone-plug technique versus arthroscopic-assisted pullout suture technique for lateral meniscal allograft transplantation. Arthroscopy 34:1940–1947

    Google Scholar 

  29. Korkala O, Karaharju E, Gronblad M, Aalto K (1984) Articular cartilage after meniscectomy. Rabbit knees studied with the scanning electron microscope. Acta Orthop Scand 55:273–277

    CAS  Google Scholar 

  30. LaPrade RF, Wills NJ, Spiridonov SI, Perkinson S (2010) A prospective outcomes study of meniscal allograft transplantation. Am J Sports Med 38:1804–1812

    Google Scholar 

  31. Lee SJ, Aadalen KJ, Malaviya P, Lorenz EP, Hayden JK, Farr J et al (2006) Tibiofemoral contact mechanics after serial medial meniscectomies in the human cadaveric knee. Am J Sports Med 34:1334–1344

    Google Scholar 

  32. Lee DH, Kim TH, Lee SH, Kim CW, Kim JM, Bin SI (2008) Evaluation of meniscus allograft transplantation with serial magnetic resonance imaging during the first postoperative year: focus on graft extrusion. Arthroscopy 24:1115–1121

    Google Scholar 

  33. Lee DH, Kim SB, Kim TH, Cha EJ, Bin SI (2010) Midterm outcomes after meniscal allograft transplantation: comparison of cases with extrusion versus without extrusion. Am J Sports Med 38:247–254

    Google Scholar 

  34. Lee DH, Lee BS, Chung JW, Kim JM, Yang KS, Cha EJ et al (2011) Changes in magnetic resonance imaging signal intensity of transplanted meniscus allografts are not associated with clinical outcomes. Arthroscopy 27:1211–1218

    Google Scholar 

  35. Lee BS, Chung JW, Kim JM, Cho WJ, Kim KA, Bin SI (2012) Morphologic changes in fresh-frozen meniscus allografts over 1 year: a prospective magnetic resonance imaging study on the width and thickness of transplants. Am J Sports Med 40:1384–1391

    Google Scholar 

  36. Lee BS, Bin SI, Kim JM, Kim WK, Kim JH (2016) Revision meniscal allograft transplantation in the lateral compartment: disparate MRI and clinical outcomes during the early postoperative period. Am J Sports Med 44:2884–2891

    Google Scholar 

  37. Lee BS, Bin SI, Kim JM, Kim WK, Choi JW (2017) Survivorship after meniscal allograft transplantation according to articular cartilage status. Am J Sports Med 45:1095–1101

    Google Scholar 

  38. Lee BS, Bin SI, Kim JM, Lee CR, Choi YH, Kwon YH (2018) Early and delayed meniscal shrinkage after fresh-frozen lateral meniscal allograft transplantation: magnetic resonance imaging study with a midterm follow-up. Arthroscopy 34:3216–3223

    Google Scholar 

  39. Lee DW, Lee JH, Kim DH, Kim JG (2018) Delayed rehabilitation after lateral meniscal allograft transplantation can reduce graft extrusion compared with standard rehabilitation. Am J Sports Med 46:2432–2440

    Google Scholar 

  40. Lee SM, Bin SI, Kim JM, Lee BS, Lee CR, Son DW et al (2019) Long-term outcomes of meniscal allograft transplantation with and without extrusion: mean 12.3-year follow-up study. Am J Sports Med 47:815–821

    Google Scholar 

  41. Liu JN, Gowd AK, Redondo ML, Christian DR, Cabarcas BC, Yanke AB et al (2019) Establishing clinically significant outcomes after meniscal allograft transplantation. Orthop J Sports Med 7:2325967118818462

    Google Scholar 

  42. Mahmoud A, Young J, Bullock-Saxton J, Myers P (2018) Meniscal allograft transplantation: the effect of cartilage status on survivorship and clinical outcome. Arthroscopy 34:1871–1876.e1871

    Google Scholar 

  43. Marcacci M, Zaffagnini S, Marcheggiani Muccioli GM, Grassi A, Bonanzinga T, Nitri M et al (2012) Meniscal allograft transplantation without bone plugs: a 3-year minimum follow-up study. Am J Sports Med 40:395–403

    Google Scholar 

  44. Marcacci M, Marcheggiani Muccioli GM, Grassi A, Ricci M, Tsapralis K, Nanni G et al (2014) Arthroscopic meniscus allograft transplantation in male professional soccer players: a 36-month follow-up study. Am J Sports Med 42:382–388

    Google Scholar 

  45. Masahiko T, Damle S, Penmatsa M, West P, Yang X, Bostrom M et al (2012) Temporal changes in collagen cross-links in spontaneous articular cartilage repair. Cartilage 3:278–287

    Google Scholar 

  46. Masferrer-Pino A, Monllau JC, Ibanez M, Erquicia JI, Pelfort X, Gelber PE (2018) Capsulodesis versus bone trough technique in lateral meniscal allograft transplantation: graft extrusion and functional results. Arthroscopy 34:1879–1888

    Google Scholar 

  47. McCormick F, Harris JD, Abrams GD, Hussey KE, Wilson H, Frank R et al (2014) Survival and reoperation rates after meniscal allograft transplantation: analysis of failures for 172 consecutive transplants at a minimum 2-year follow-up. Am J Sports Med 42:892–897

    Google Scholar 

  48. McDermott ID, Amis AA (2006) The consequences of meniscectomy. J Bone Jt Surg Br 88:1549–1556

    CAS  Google Scholar 

  49. Merkely G, Ogura T, Ackermann J, Mestriner AB, Minas T, Gomoll AH (2019) Open meniscal allograft transplantation with transosseous suture fixation of the meniscal body significantly decreases meniscal extrusion rate compared with arthroscopic technique. Arthroscopy 35:1658–1666

    Google Scholar 

  50. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535

    Google Scholar 

  51. Noyes FR, Barber-Westin SD (2016) Long-term survivorship and function of meniscus transplantation. Am J Sports Med 44:2330–2338

    Google Scholar 

  52. Noyes FR, Barber-Westin SD, Rankin M (2004) Meniscal transplantation in symptomatic patients less than fifty years old. J Bone Jt Surg Am 86:1392–1404

    Google Scholar 

  53. Orishimo KF, Kremenic IJ, Lee SJ, McHugh MP, Nicholas SJ (2013) Is valgus unloader bracing effective in normally aligned individuals: implications for post-surgical protocols following cartilage restoration procedures. Knee Surg Sports Traumatol Arthrosc 21:2661–2666

    Google Scholar 

  54. Parkinson B, Smith N, Asplin L, Thompson P, Spalding T (2016) factors predicting meniscal allograft transplantation failure. Orthop J Sports Med 4:2325967116663185

    Google Scholar 

  55. Rath E, Richmond JC, Yassir W, Albright JD, Gundogan F (2001) Meniscal allograft transplantation. Two- to eight-year results. Am J Sports Med 29:410–414

    CAS  Google Scholar 

  56. Ren S, Zhang X, You T, Jiang X, Jin D, Zhang W (2018) Clinical and radiologic outcomes after a modified bone plug technique with anatomical meniscal root reinsertion for meniscal allograft transplantation and a minimum 18-month follow-up. J Orthop Surg Res 13:97

    Google Scholar 

  57. Riboh JC, Tilton AK, Cvetanovich GL, Campbell KA, Cole BJ (2016) Meniscal allograft transplantation in the adolescent population. Arthroscopy 32:1133–1140.e1131

    Google Scholar 

  58. Roumazeille T, Klouche S, Rousselin B, Bongiorno V, Graveleau N, Billot N et al (2015) Arthroscopic meniscal allograft transplantation with two tibia tunnels without bone plugs: evaluation of healing on MR arthrography and functional outcomes. Knee Surg Sports Traumatol Arthrosc 23:264–269

    Google Scholar 

  59. Ryu RK, Dunbar VW, Morse GG (2002) Meniscal allograft replacement: a 1-year to 6-year experience. Arthroscopy 18:989–994

    Google Scholar 

  60. Salter RB, Simmonds DF, Malcolm BW, Rumble EJ, MacMichael D, Clements ND (1980) The biological effect of continuous passive motion on the healing of full-thickness defects in articular cartilage. An experimental investigation in the rabbit. J Bone Jt Surg Am 62:1232–1251

    CAS  Google Scholar 

  61. Saltzman BM, Bajaj S, Salata M, Daley EL, Strauss E, Verma N et al (2012) Prospective long-term evaluation of meniscal allograft transplantation procedure: a minimum of 7-year follow-up. J Knee Surg 25:165–175

    Google Scholar 

  62. Stollsteimer GT, Shelton WR, Dukes A, Bomboy AL (2000) Meniscal allograft transplantation: a 1- to 5-year follow-up of 22 patients. Arthroscopy 16:343–347

    CAS  Google Scholar 

  63. Stone KR, Walgenbach AW, Turek TJ, Freyer A, Hill MD (2006) Meniscus allograft survival in patients with moderate to severe unicompartmental arthritis: a 2- to 7-year follow-up. Arthroscopy 22:469–478

    Google Scholar 

  64. Stone KR, Pelsis JR, Surrette ST, Walgenbach AW, Turek TJ (2015) Meniscus transplantation in an active population with moderate to severe cartilage damage. Knee Surg Sports Traumatol Arthrosc 23:251–257

    Google Scholar 

  65. Smith NA, Parsons N, Wright D, Hutchinson C, Metcalfe A, Thompson P et al (2018) A pilot randomized trial of meniscal allograft transplantation versus personalized physiotherapy for patients with a symptomatic meniscal deficient knee compartment. Bone Jt J 100-b:56–63

    CAS  Google Scholar 

  66. van der Wal RJP, Attia D, Waarsing EH, Thomassen BJW, van Arkel ERA (2018) Two-year follow-up of bone mineral density changes in the knee after meniscal allograft transplantation: results of an explorative study. Knee 25:1091–1099

    Google Scholar 

  67. Verdonk PC, Demurie A, Almqvist KF, Veys EM, Verbruggen G, Verdonk R (2005) Transplantation of viable meniscal allograft. Survivorship analysis and clinical outcome of one hundred cases. J Bone Jt Surg Am 87:715–724

    Google Scholar 

  68. Verdonk PC, Verstraete KL, Almqvist KF, De Cuyper K, Veys EM, Verbruggen G et al (2006) Meniscal allograft transplantation: long-term clinical results with radiological and magnetic resonance imaging correlations. Knee Surg Sports Traumatol Arthrosc 14:694–706

    Google Scholar 

  69. Verma NN, Kolb E, Cole BJ, Berkson MB, Garretson R, Farr J et al (2008) The effects of medial meniscal transplantation techniques on intra-articular contact pressures. J Knee Surg 21:20–26

    Google Scholar 

  70. Vundelinckx B, Bellemans J, Vanlauwe J (2010) Arthroscopically assisted meniscal allograft transplantation in the knee: a medium-term subjective, clinical, and radiographical outcome evaluation. Am J Sports Med 38:2240–2247

    Google Scholar 

  71. Vundelinckx B, Vanlauwe J, Bellemans J (2014) Long-term subjective, clinical, and radiographic outcome evaluation of meniscal allograft transplantation in the knee. Am J Sports Med 42:1592–1599

    Google Scholar 

  72. Waterman BR, Rensing N, Cameron KL, Owens BD, Pallis M (2016) Survivorship of meniscal allograft transplantation in an athletic patient population. Am J Sports Med 44:1237–1242

    Google Scholar 

  73. Wirth CJ, Peters G, Milachowski KA, Weismeier KG, Kohn D (2002) Long-term results of meniscal allograft transplantation. Am J Sports Med 30:174–181

    Google Scholar 

  74. Xu C, Zhao J (2015) A meta-analysis comparing meniscal repair with meniscectomy in the treatment of meniscal tears: the more meniscus, the better outcome? Knee Surg Sports Traumatol Arthrosc 23:164–170

    Google Scholar 

  75. American Academy of Orthopaedic Surgeons Board of Directors. Patient Return to Play Checklist. Available at: www.aaos.org/uploadedFiles/PreProduction/Quality/AUCs_and_Performance_Measures/appropriate_use/AAOS%20ACL%20Return%20to%20Play%20Checklist.pdf

  76. Yanke AB, Chalmers PN, Frank RM, Friel NA, Karas V, Cole BJ (2014) Clinical outcome of revision meniscal allograft transplantation: minimum 2-year follow-up. Arthroscopy 30:1602–1608

    Google Scholar 

  77. Yoldas EA, Sekiya JK, Irrgang JJ, Fu FH, Harner CD (2003) Arthroscopically assisted meniscal allograft transplantation with and without combined anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 11:173–182

    Google Scholar 

  78. Yoon KH, Lee SH, Park SY, Jung GY, Chung KY (2014) Meniscus allograft transplantation for discoid lateral meniscus: clinical comparison between discoid lateral meniscus and nondiscoid lateral meniscus. Arthroscopy 30:724–730

    Google Scholar 

  79. Yoon KH, Lee SH, Park SY, Kim HJ, Chung KY (2014) Meniscus allograft transplantation: a comparison of medial and lateral procedures. Am J Sports Med 42:200–207

    Google Scholar 

  80. Zaffagnini S, Grassi A, Marcheggiani Muccioli GM, Benzi A, Roberti di Sarsina T, Signorelli C et al (2016) Is sport activity possible after arthroscopic meniscal allograft transplantation? Midterm results in active patients. Am J Sports Med 44:625–632

    Google Scholar 

  81. Zaffagnini S, Grassi A, Marcheggiani Muccioli GM, Benzi A, Serra M, Rotini M et al (2016) Survivorship and clinical outcomes of 147 consecutive isolated or combined arthroscopic bone plug free meniscal allograft transplantation. Knee Surg Sports Traumatol Arthrosc 24:1432–1439

    Google Scholar 

  82. Zaman S, White A, Shi WJ, Freedman KB, Dodson CC (2018) Return-to-play guidelines after medial patellofemoral ligament surgery for recurrent patellar instability: a systematic review. Am J Sports Med 46:2530–2539

    Google Scholar 

  83. Zhang H, Liu X, Wei Y, Hong L, Geng XS, Wang XS et al (2012) Meniscal allograft transplantation in isolated and combined surgery. Knee Surg Sports Traumatol Arthrosc 20:281–289

    Google Scholar 

  84. Zhang H, Chen S, Qiu M, Zhou A, Yan W, Zhang J (2018) Lateral meniscus allograft transplantation with platelet-rich plasma injections: a minimum two-year follow-up study. Knee 25:568–576

    Google Scholar 

Download references

Funding

No funding to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Strauss.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This manuscript is a systematic review and does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurley, E.T., Davey, M.S., Jamal, M. et al. High rate of return-to-play following meniscal allograft transplantation. Knee Surg Sports Traumatol Arthrosc 28, 3561–3568 (2020). https://doi.org/10.1007/s00167-020-05956-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-020-05956-z

Keywords

Navigation