Notchplasty alters knee biomechanics after anatomic ACL reconstruction

  • Yongtao Mao
  • Brandon Marshall
  • Taylor Price
  • Monica Linde
  • Patrick Smolinski
  • Freddie H. Fu
  • Carola F. van EckEmail author



The aims of this study were (1) to study the biomechanics of single-bundle anatomic ACL reconstructed knees with and without notchplasty using a robotic testing system and (2) to determine if there would be a difference between performing a small or large notchplasty.


Fifteen fresh-frozen specimens were used in this study. The ACL reconstruction (ACL-R) was performed using an anatomic single-bundle technique with the 8 mm soft tissue graft fixed at 30° with suspensory fixation on the femoral side and a screw and washer on the tibial side. The notchplasty was then created with a burr. The following knee states were compared: (1) ACL-R, (2) ACL-R with a small (3 mm) notchplasty, and (3) ACL-R with a large (6 mm) notchplasty. Four loading conditions were applied: (1) an anterior drawer with an 89 N anterior tibial load, (2) simulated pivot-shift loading, (3) a 5 Nm internal rotational moment, and (4) a 5 Nm external rotational moment.


Under anterior tibial loading, anterior tibial translation increased, and graft force decreased significantly after ACL-R + 3 mm notchplasty and ACLR + 6 mm notchplasty compared to ACL-R alone at FE, 15° and 30° of knee flexion. There were no changes in either anterior tibial translation or graft force under simulated pivot-shift loading, internal rotational moment, or external rotational moment.


When added to anatomic ACL reconstruction, notchplasty increased anterior tibial translation and decreased graft forces during low knee flexion angles. There was no difference between a small and large notchplasty. The findings of this study are clinically relevant as the purpose of anatomic ACL reconstruction is to restore normal knee laxity, and while notchplasty may be helpful in avoiding graft impingement and improving visualization, removing even 3 mm of bone leads to biomechanical changes.


Notchplasty Anatomic ACL Knee Biomechanics Robotic 



The author did not receive any outside funding or grants directly related to the research presented in this manuscript. The author states that this manuscript is an original work only submitted to this journal. All authors contributed to the preparation of this work.

Compliance with ethical standards

Conflict of interest

Yongtao Mao MD: no conflict. Brandon Marshall MS: no conflict. Taylor Price BS: no conflict. Monica Linde MS: no conflict. Patrick Smolinski PhD: no conflict. Freddie H. Fu MD: no conflict. Carola F. van Eck MD PhD: no conflict.

Ethical approval

Approval for this study was obtained from Committee for Oversight of Research and Clinical Training Involving Decedents (CORID).


  1. 1.
    Ahn JH, Yoo JC, Yang HS, Kim JH, Wang JH (2007) Second-look arthroscopic findings of 208 patients after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 15:242–248CrossRefGoogle Scholar
  2. 2.
    Araujo PH, Asai S, Pinto M, Protta T, Middleton K, Linde-Rosen M, Irrgang J, Smolinski P, Fu FH (2015) ACL graft position affects in situ graft force following ACL reconstruction. J Bone Joint Surg Am 97:1767–1773CrossRefGoogle Scholar
  3. 3.
    Araujo PH, van Eck CF, Macalena JA, Fu FH (2011) Advances in the three-portal technique for anatomical single- or double-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 19:1239–1242CrossRefGoogle Scholar
  4. 4.
    Ferrari MB, Mannava S, DePhillipo N, Sanchez G, LaPrade RF (2017) Notchplasty for the arthroscopic treatment of limited knee extension. Arthrosc Tech 6:e517–e524CrossRefGoogle Scholar
  5. 5.
    Fitch RB, Montgomery RD, Kincaid SA, Hatchcock JT, Milton JL, Garrett PD, Wright JC, Terry GC (1995) The effect of intercondylar notchplasty on the normal canine stifle. Vet Surg 24:156–164CrossRefGoogle Scholar
  6. 6.
    Fung DT, Hendrix RW, Koh JL, Zhang LQ (2007) ACL impingement prediction based on MRI scans of individual knees. Clin Orthop Relat Res 460:210–218PubMedGoogle Scholar
  7. 7.
    Hame SL, Markolf KL, Hunter DM, Oakes DA, Zoric B (2003) Effects of notchplasty and femoral tunnel position on excursion patterns of an anterior cruciate ligament graft. Arthroscopy 19:340–345CrossRefGoogle Scholar
  8. 8.
    Ingham SJM, de Carvalho RT, Martins CAQ, Lertwanich P, Abdalla RJ, Smolinski P, Lovejoy CO, Fu FH (2017) Anterolateral ligament anatomy: a comparative anatomical study. Knee Surg Sports Traumatol Arthrosc 25:1048–1054CrossRefGoogle Scholar
  9. 9.
    Keays SL, Newcombe PA, Bullock-Saxton JE, Bullock MI, Keays AC (2010) Factors involved in the development of osteoarthritis after anterior cruciate ligament surgery. Am J Sports Med 38:455–463CrossRefGoogle Scholar
  10. 10.
    Keklikci K, Yapici C, Kim D, Linde-Rosen M, Smolinski P, Fu FH (2013) The effect of notchplasty in anterior cruciate ligament reconstruction: a biomechanical study in the porcine knee. Knee Surg Sports Traumatol Arthrosc 21:1915–1921CrossRefGoogle Scholar
  11. 11.
    LaPrade RF, Terry GC, Montgomery RD, Curd D, Simmons DJ (1998) Winner of the AlbertTrillat Young Investigator Award. The effects of aggressive notchplasty on the normal knee in dogs. Am J Sports Med 26:193–200CrossRefGoogle Scholar
  12. 12.
    Liu C, Wang Y, Li Z, Li J, Zhang H, Fu Y, Zhang K (2018) Tibiofemoral joint contact area and stress after single-bundle anterior cruciate ligament reconstruction with transtibial versus anteromedial portal drilling techniques. J Orthop Surg Res 13:247CrossRefGoogle Scholar
  13. 13.
    Livesay GA, Fujie H, Kashiwaguchi S, Morrow DA, Fu FH, Woo SL (1995) Determination of the in situ forces and force distribution within the human anterior cruciate ligament. Ann Biomed Eng 23:467–474CrossRefGoogle Scholar
  14. 14.
    Lohmander LS, Ostenberg A, Englund M, Roos H (2004) High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players 12 years after anterior cruciate ligament injury. Arthritis Rheum 50:3145–3152CrossRefGoogle Scholar
  15. 15.
    Machnicki AL, Spurlock LB, Strier KB, Reno PL, Lovejoy CO (2016) First steps of bipedality in hominids: evidence from the atelid and proconsulid pelvis. PeerJ 4:e1521CrossRefGoogle Scholar
  16. 16.
    Markolf KL, Hame SL, Hunter DM, Oakes D, Gause P (2002) Biomechanical effects of femoral notchplasty in anterior cruciate ligament reconstruction. Am J Sports Med 30:83–89CrossRefGoogle Scholar
  17. 17.
    May DA, Snearly WN, Bents R, Jones R (1997) MR imaging findings in anterior cruciate ligament reconstruction: evaluation of notchplasty. AJR Am J Roentgenol 169:217–222CrossRefGoogle Scholar
  18. 18.
    Millett PJ, Wickiewicz TL, Warren RF (2001) Motion loss after ligament injuries to the knee. Part I: causes. Am J Sports Med 29:664–675CrossRefGoogle Scholar
  19. 19.
    Pena E, Martinez MA, Calvo B, Palanca D, Doblare M (2005) A finite element simulation of the effect of graft stiffness and graft tensioning in ACL reconstruction. Clin Biomech (Bristol, Avon) 20:636–644CrossRefGoogle Scholar
  20. 20.
    Pilia M, Murray M, Guda T, Heckman M, Appleford M (2015) Pretensioning of soft tissue grafts in anterior cruciate ligament reconstruction. Orthopedics 38:e582–587CrossRefGoogle Scholar
  21. 21.
    Rahnemai-Azar AA, Sabzevari S, Irarrazaval S, Chao T, Fu FH (2016) Anatomical individualized ACL reconstruction. Arch Bone Joint Surg 4:291–297PubMedGoogle Scholar
  22. 22.
    Ranuccio F, Familiari F, Tedesco G, La Camera F, Gasparini G (2017) Effects of notchplasty on anterior cruciate ligament reconstruction: a systematic review. Joints 5:173–179CrossRefGoogle Scholar
  23. 23.
    Rudy TW, Livesay GA, Woo SL, Fu FH (1996) A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. J Biomech 29:1357–1360CrossRefGoogle Scholar
  24. 24.
    Sakane M, Fox RJ, Woo SL, Livesay GA, Li G, Fu FH (1997) situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. J Orthop Res 15:285–293CrossRefGoogle Scholar
  25. 25.
    Sanders TL, Kremers HM, Bryan AJ, Fruth KM, Larson DR, Pareek A, Levy BA, Stuart MJ, Dahm DL, Krych AJ (2016) Is anterior cruciate ligament reconstruction effective in preventing secondary meniscal tears and osteoarthritis? Am J Sports Med 44:1699–1707CrossRefGoogle Scholar
  26. 26.
    Sasaki Y, Chang SS, Fujii M, Araki D, Zhu J, Marshall B, Linde-Rosen M, Smolinski P, Fu FH (2016) Effect of fixation angle and graft tension in double-bundle anterior cruciate ligament reconstruction on knee biomechanics. Knee Surg Sports Traumatol Arthrosc 24:2892–2898CrossRefGoogle Scholar
  27. 27.
    Seo YJ, Yoo YS, Kim YS, Jang SW, Song SY, Hyun YS, Smolinski P, Fu FH (2014) The effect of notchplasty on tunnel widening in anterior cruciate ligament reconstruction. Arthroscopy 30:739–746CrossRefGoogle Scholar
  28. 28.
    Sundemo D, Sernert N, Kartus J, Senorski ES, Svantesson HE, Karlsson J, Samuelsson K (2018) Increased postoperative manual knee laxity at 2 years results in inferior long-term subjective outcome after anterior cruciate ligament reconstruction. Am J Sports Med 46:2632–2645CrossRefGoogle Scholar
  29. 29.
    van Eck CF, Martins CA, Vyas SM, Celentano U, van Dijk CN, Fu FH (2010) Femoral intercondylar notch shape and dimensions in ACL-injured patients. Knee Surg Sports Traumatol Arthrosc 18:1257–1262CrossRefGoogle Scholar
  30. 30.
    Wilde J, Bedi A, Altchek DW (2014) Revision anterior cruciate ligament reconstruction. Sports Health 6:504–518CrossRefGoogle Scholar
  31. 31.
    Xerogeanes JW, Fox RJ, Takeda Y, Kim HS, Ishibashi Y, Carlin GJ, Woo SL (1998) A functional comparison of animal anterior cruciate ligament models to the human anterior cruciate ligament. Ann Biomed Eng 26:345–352CrossRefGoogle Scholar
  32. 32.
    Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL (2002) Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30:660–666CrossRefGoogle Scholar
  33. 33.
    Yasuda K, Ichiyama H, Kondo E, Miyatake S, Inoue M, Tanabe Y (2008) An in vivo biomechanical study on the tension-versus-knee flexion angle curves of two grafts in anatomic double-bundle anterior cruciate ligament reconstruction: effects of initial tension and internal tibial rotation. Arthroscopy 24:276–284CrossRefGoogle Scholar
  34. 34.
    Zantop T, Herbort M, Raschke MJ, Fu FH, Petersen W (2007) The role of the anteromedial and posterolateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation. Am J Sports Med 35:223–227CrossRefGoogle Scholar
  35. 35.
    Zheng L, Sabzevari S, Marshall B, Zhu J, Linde MA, Smolinski P, Fu FH (2017) Anterior cruciate ligament graft fixation first in anterior and posterior cruciate ligament reconstruction best restores knee kinematics. Knee Surg Sports Traumatol Arthrosc 26:1237–1244PubMedGoogle Scholar
  36. 36.
    Zuiderbaan HA, Khamaisy S, Nawabi DH, Thein R, Nguyen JT, Lipman JD, Pearle AD (2014) Notchplasty in anterior cruciate ligament reconstruction in the setting of passive anterior tibial subluxation. Knee 21:1160–1165CrossRefGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2019

Authors and Affiliations

  1. 1.Orthopaedic Engineering and Sports Medicine LaboratoryUniversity of PittsburghPittsburghUSA
  2. 2.Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghUSA

Personalised recommendations