In vivo kinematics and ligamentous function of the knee during weight-bearing flexion: an investigation on mid-range flexion of the knee

  • Zhitao Rao
  • Chaochao Zhou
  • Willem A. Kernkamp
  • Timothy E. Foster
  • Hany S. Bedair
  • Guoan LiEmail author



To investigate the in vivo femoral condyle motion and synergistic function of the ACL/PCL along the weight-bearing knee flexion.


Twenty-two healthy human knees were imaged using a combined MRI and dual fluoroscopic imaging technique during a single-legged lunge (0°–120°). The medial and lateral femoral condyle translation and rotation (measured using geometric center axis-GCA), and the length changes of the ACL/PCL were analyzed at: low (0°–30°), mid-range (30°–90°) and high (90°–120°) flexion of the knee.


At low flexion (0°–30°), the strains of the ACL and the posterior–medial bundle of the PCL decreased. The medial condyle showed anterior translation and lateral condyle posterior translation, accompanied with a sharp increase in external GCA rotation (internal tibial rotation). As the knee continued flexion in mid-range (30°–90°), both ACL and PCL were slack (with negative strain values). The medial condyle moved anteriorly before 60° of flexion and then posteriorly, accompanied with a slow increase of GCA rotation. As the knee flexed in high flexion (90°–120°), only the PCL had increasingly strains. Both medial and lateral condyles moved posteriorly with a rather constant GCA rotation.


The ACL and PCL were shown to play a reciprocal and synergistic role during knee flexion. Mid-range reciprocal anterior–posterior femoral translation or laxity corresponds to minimal constraints of the ACL and PCL, and may represent a natural motion character of normal knees. The data could be used as a valuable reference when managing the mid-range “instability” and enhancing high flexion capability of the knee after TKAs.

Level of evidence

Level IV.


ACL PCL TKA In vivo knee kinematics Mid-range instability High flexion 



We would like to gratefully acknowledge the financial support of the National Institute of Health (R01AR055612) and the Department of Orthopaedic Surgery at Newton-Wellesley Hospital.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study was approved by the institutional review board of the Massachusetts General Hospital (Partners Human Research Committees, protocol #: 2003P000337/PHS).

Informed consent

Written consent was obtained from each subject prior to participating in this study.


  1. 1.
    Argenson JN, Scuderi GR, Komistek RD, Scott WN, Kelly MA, Aubaniac JM (2005) In vivo kinematic evaluation and design considerations related to high flexion in total knee arthroplasty. J Biomech 38:277–284CrossRefGoogle Scholar
  2. 2.
    Arnout N, Vanlommel L, Vanlommel J, Luyckx JP, Labey L, Innocenti B et al (2015) Post-cam mechanics and tibiofemoral kinematics: a dynamic in vitro analysis of eight posterior-stabilized total knee designs. Knee Surg Sports Traumatol Arthrosc 23:3343–3353CrossRefGoogle Scholar
  3. 3.
    Bergamini E, Pillet H, Hausselle J, Thoreux P, Guerard S, Camomilla V et al (2011) Tibio-femoral joint constraints for bone pose estimation during movement using multi-body optimization. Gait Posture 33:706–711CrossRefGoogle Scholar
  4. 4.
    Blankevoort L, Huiskes R (1991) Ligament-bone interaction in a three-dimensional model of the knee. J Biomech Eng 113:263–269CrossRefGoogle Scholar
  5. 5.
    Defrate LE, Papannagari R, Gill TJ, Moses JM, Pathare NP, Li G (2006) The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am J Sports Med 34:1240–1246CrossRefGoogle Scholar
  6. 6.
    Dennis DA, Heekin RD, Clark CR, Murphy JA, O’Dell TL, Dwyer KA (2013) Effect of implant design on knee flexion. J Arthroplasty 28:429–438CrossRefGoogle Scholar
  7. 7.
    Dennis DA, Komistek RD, Colwell CE Jr, Ranawat CS, Scott RD, Thornhill TS et al (1998) In vivo anteroposterior femorotibial translation of total knee arthroplasty: a multicenter analysis. Clin Orthop Relat Res 356:47–57CrossRefGoogle Scholar
  8. 8.
    Dimitriou D, Tsai TY, Park KK, Hosseini A, Kwon YM, Rubash HE et al (2016) Weight-bearing condyle motion of the knee before and after cruciate-retaining TKA: in-vivo surgical transepicondylar axis and geometric center axis analyses. J Biomech 49:1891–1898CrossRefGoogle Scholar
  9. 9.
    Draganich LF, Piotrowski GA, Martell J, Pottenger LA (2002) The effects of early rollback in total knee arthroplasty on stair stepping. J Arthroplasty 17:723–730CrossRefGoogle Scholar
  10. 10.
    Feng Y, Tsai TY, Li JS, Wang S, Hu H, Zhang C et al (2015) Motion of the femoral condyles in flexion and extension during a continuous lunge. J Orthop Res 33:591–597CrossRefGoogle Scholar
  11. 11.
    Ghosh KM, Blain AP, Longstaff L, Rushton S, Amis AA, Deehan DJ (2014) Can we define envelope of laxity during navigated knee arthroplasty? Knee Surg Sports Traumatol Arthrosc 22:1736–1743CrossRefGoogle Scholar
  12. 12.
    Grieco TF, Sharma A, Dessinger GM, Cates HE, Komistek RD (2018) In vivo kinematic comparison of a bicruciate stabilized total knee arthroplasty and the normal knee using fluoroscopy. J Arthroplasty 33:565–571CrossRefGoogle Scholar
  13. 13.
    Grieco TF, Sharma A, Komistek RD, Cates HE (2016) Single Versus multiple-radii cruciate-retaining total knee arthroplasty: an in vivo mobile fluoroscopy study. J Arthroplasty 31:694–701CrossRefGoogle Scholar
  14. 14.
    Hamada D, Wada K, Takasago T, Goto T, Nitta A, Higashino K et al (2018) Native rotational knee kinematics are lost in bicruciate-retaining total knee arthroplasty when the tibial component is replaced. Knee Surg Sports Traumatol Arthrosc. Google Scholar
  15. 15.
    Hoher J, Vogrin TM, Woo SL, Carlin GJ, Aroen A, Harner CD (1999) In situ forces in the human posterior cruciate ligament in response to muscle loads: a cadaveric study. J Orthop Res 17:763–768CrossRefGoogle Scholar
  16. 16.
    Hosseini A, Gill TJ, Li G (2009) In vivo anterior cruciate ligament elongation in response to axial tibial loads. J Orthop Sci 14:298–306CrossRefGoogle Scholar
  17. 17.
    Hosseini A, Qi W, Tsai TY, Liu Y, Rubash H, Li G (2015) In vivo length change patterns of the medial and lateral collateral ligaments along the flexion path of the knee. Knee Surg Sports Traumatol Arthrosc 23:3055–3061CrossRefGoogle Scholar
  18. 18.
    Incavo SJ, Wild JJ, Coughlin KM, Beynnon BD (2007) Early revision for component malrotation in total knee arthroplasty. Clin Orthop Relat Res 458:131–136Google Scholar
  19. 19.
    Komistek RD, Mahfouz MR, Bertin KC, Rosenberg A, Kennedy W (2008) In vivo determination of total knee arthroplasty kinematics: a multicenter analysis of an asymmetrical posterior cruciate retaining total knee arthroplasty. J Arthroplasty 23:41–50CrossRefGoogle Scholar
  20. 20.
    Kozanek M, Hosseini A, de Velde SK, Moussa ME, Li JS, Gill TJ et al (2011) Kinematic evaluation of the step-up exercise in anterior cruciate ligament deficiency. Clin Biomech (Bristol, Avon) 26:950–954CrossRefGoogle Scholar
  21. 21.
    Kuroyanagi Y, Mu S, Hamai S, Robb WJ, Banks SA (2012) In vivo knee kinematics during stair and deep flexion activities in patients with bicruciate substituting total knee arthroplasty. J Arthroplasty 27:122–128CrossRefGoogle Scholar
  22. 22.
    Li G, Van de Velde SK, Bingham JT (2008) Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion. J Biomech 41:1616–1622CrossRefGoogle Scholar
  23. 23.
    Li G, Zayontz S, Most E, DeFrate LE, Suggs JF, Rubash HE (2004) In situ forces of the anterior and posterior cruciate ligaments in high knee flexion: an in vitro investigation. J Orthop Res 22:293–297CrossRefGoogle Scholar
  24. 24.
    Meneghini RM, Deckard ER, Ishmael MK, Ziemba-Davis M (2017) A dual-pivot pattern simulating native knee kinematics optimizes functional outcomes after total knee arthroplasty. J Arthroplasty 32:3009–3015CrossRefGoogle Scholar
  25. 25.
    Minoda Y, Nakagawa S, Sugama R, Ikawa T, Noguchi T, Hirakawa M (2015) Midflexion laxity after implantation was influenced by the joint gap balance before implantation in TKA. J Arthroplasty 30:762–765CrossRefGoogle Scholar
  26. 26.
    Mochizuki T, Tanifuji O, Sato T, Hijikata H, Koga H, Watanabe S et al (2017) Association between anteroposterior laxity in mid-range flexion and subjective healing of instability after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 25:3543–3548CrossRefGoogle Scholar
  27. 27.
    Moro-oka TA, Hamai S, Miura H, Shimoto T, Higaki H, Fregly BJ et al (2008) Dynamic activity dependence of in vivo normal knee kinematics. J Orthop Res 26:428–434CrossRefGoogle Scholar
  28. 28.
    Moro-oka TA, Muenchinger M, Canciani JP, Banks SA (2007) Comparing in vivo kinematics of anterior cruciate-retaining and posterior cruciate-retaining total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 15:93–99CrossRefGoogle Scholar
  29. 29.
    Most E, Axe J, Rubash H, Li G (2004) Sensitivity of the knee joint kinematics calculation to selection of flexion axes. J Biomech 37:1743–1748CrossRefGoogle Scholar
  30. 30.
    Moynihan AL, Varadarajan KM, Hanson GR, Park SE, Nha KW, Suggs JF et al (2010) In vivo knee kinematics during high flexion after a posterior-substituting total knee arthroplasty. Int Orthop 34:497–503CrossRefGoogle Scholar
  31. 31.
    Noyes FR, Barber-Westin SD (2017) Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes, 2nd edn. Elsevier, Philadelphia, pp 83–84CrossRefGoogle Scholar
  32. 32.
    Okada Y, Teramoto A, Takagi T, Yamakawa S, Sakakibara Y, Shoji H et al (2018) ACL function in bicruciate-retaining total knee arthroplasty. J Bone Joint Surg Am 100:e114CrossRefGoogle Scholar
  33. 33.
    Osti M, Tschann P, Kunzel KH, Benedetto KP (2012) Anatomic characteristics and radiographic references of the anterolateral and posteromedial bundles of the posterior cruciate ligament. Am J Sports Med 40:1558–1563CrossRefGoogle Scholar
  34. 34.
    Parkar AP, Adriaensen M, Vindfeld S, Solheim E (2017) The anatomic centers of the femoral and tibial insertions of the anterior cruciate ligament: a systematic review of imaging and cadaveric studies reporting normal center locations. Am J Sports Med 45:2180–2188CrossRefGoogle Scholar
  35. 35.
    Provenzano PP, Heisey D, Hayashi K, Lakes R, Vanderby R Jr (2002) Subfailure damage in ligament: a structural and cellular evaluation. J Appl Physiol (1985) 92:362–371CrossRefGoogle Scholar
  36. 36.
    Ries MD (2007) Effect of ACL sacrifice, retention, or substitution on kinematics after TKA. Orthopedics 30:74–76Google Scholar
  37. 37.
    Rochcongar G, Pillet H, Bergamini E, Moreau S, Thoreux P, Skalli W et al (2016) A new method for the evaluation of the end-to-end distance of the knee ligaments and popliteal complex during passive knee flexion. Knee 23:420–425CrossRefGoogle Scholar
  38. 38.
    Schimmel JJ, Defoort KC, Heesterbeek PJ, Wymenga AB, Jacobs WC, van Hellemondt GG (2014) Bicruciate substituting design does not improve maximal flexion in total knee arthroplasty: a randomized controlled trial. J Bone Joint Surg Am 96:e81CrossRefGoogle Scholar
  39. 39.
    Suggs JF, Hanson GR, Park SE, Moynihan AL, Li G (2008) Patient function after a posterior stabilizing total knee arthroplasty: cam-post engagement and knee kinematics. Knee Surg Sports Traumatol Arthrosc 16:290–296CrossRefGoogle Scholar
  40. 40.
    Sumino T, Gadikota HR, Varadarajan KM, Kwon YM, Rubash HE, Li G (2011) Do high flexion posterior stabilised total knee arthroplasty designs increase knee flexion? A meta analysis. Int Orthop 35:1309–1319CrossRefGoogle Scholar
  41. 41.
    Taylor KA, Terry ME, Utturkar GM, Spritzer CE, Queen RM, Irribarra LA et al (2011) Measurement of in vivo anterior cruciate ligament strain during dynamic jump landing. J Biomech 44:365–371CrossRefGoogle Scholar
  42. 42.
    Tsai TY, Liow MHL, Peng Y, Arauz P, Li G, Kwon YM (2018) In-vivo elongation of anterior and posterior cruciate ligament in bi-cruciate retaining total knee arthroplasty. J Orthop Res. Google Scholar
  43. 43.
    Yoo JD, Papannagari R, Park SE, DeFrate LE, Gill TJ, Li G (2005) The effect of anterior cruciate ligament reconstruction on knee joint kinematics under simulated muscle loads. Am J Sports Med 33:240–246CrossRefGoogle Scholar
  44. 44.
    Yoon JR, Jeong HI, Oh KJ, Yang JH (2013) In vivo gap analysis in various knee flexion angles during navigation-assisted total knee arthroplasty. J Arthroplasty 28:1796–1800CrossRefGoogle Scholar
  45. 45.
    Yue B, Varadarajan KM, Moynihan AL, Liu F, Rubash HE, Li G (2011) Kinematics of medial osteoarthritic knees before and after posterior cruciate ligament retaining total knee arthroplasty. J Orthop Res 29:40–46CrossRefGoogle Scholar
  46. 46.
    Yue B, Varadarajan KM, Rubash HE, Li G (2012) In vivo function of posterior cruciate ligament before and after posterior cruciate ligament-retaining total knee arthroplasty. Int Orthop 36:1387–1392CrossRefGoogle Scholar
  47. 47.
    Zingde SM, Leszko F, Sharma A, Mahfouz MR, Komistek RD, Dennis DA (2014) In vivo determination of cam-post engagement in fixed and mobile-bearing TKA. Clin Orthop Relat Res 472:254–262CrossRefGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2019

Authors and Affiliations

  • Zhitao Rao
    • 1
    • 2
    • 4
  • Chaochao Zhou
    • 1
    • 4
  • Willem A. Kernkamp
    • 1
  • Timothy E. Foster
    • 1
    • 3
  • Hany S. Bedair
    • 1
    • 3
    • 4
  • Guoan Li
    • 1
    Email author
  1. 1.Orthopaedic Bioengineering Research CenterNewton-Wellesley Hospital/Harvard Medical SchoolNewtonUSA
  2. 2.Department of Orthopedics, Tongji HospitalTongji University School of MedicineShanghaiChina
  3. 3.Department of Orthopedic SurgeryNewton-Wellesley Hospital/Harvard Medical SchoolNewtonUSA
  4. 4.Department of Orthopaedic SurgeryMassachusetts General Hospital/Harvard Medical SchoolBostonUSA

Personalised recommendations