Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 27, Issue 11, pp 3626–3632 | Cite as

Primary ACL reconstruction using the LARS device is associated with a high failure rate at minimum of 6-year follow-up

  • Scott John TullochEmail author
  • Brian Meldan Devitt
  • Tabitha Porter
  • Taylor Hartwig
  • Haydn Klemm
  • Sam Hookway
  • Cameron John Norsworthy



The Ligament Augmentation and Reconstruction System (LARS®) is a synthetic ligament consisting of fibres made of polyethylene terephthalate. Despite the LARS being used as an anterior cruciate ligament (ACL) device for nearly 30 years and the well-documented complications from earlier synthetic ligament designs, there is a paucity of published medium- to long-term results. The aim of this study is to report the clinical and functional outcomes after ACL reconstruction using the LARS at a minimum follow-up of 6 years.


Results of a single surgeon’s entire cohort of 55 patients who underwent primary LARS ACL surgery were reviewed at a median of 7.8 years (6.0–9.4). Patient-reported outcome measures including the International Knee Documentation Committee (IKDC) score and 36-Item Short Form Health Survey (SF-36) were collected and clinical assessment consisted of range of motion (ROM) and the KT-1000 arthrometer to assess the side–side difference in the operative and non-operative knee. Mechanical failures of the graft were confirmed at revision surgery and a survivorship analysis was performed using the Kaplan–Meier method.


The overall mechanical failure rate was 17/51 (33.3%) with ruptures occurring at a median 3.9 years (0.6–8.8 years) following primary LARS ACL surgery. Secondary operative procedures were performed in 39.2% of patients. For intact grafts, there was no statistically significant difference is side-to-side ROM or anterior knee laxity and subjective scores revealed a median IKDC subjective score of 85.1 (26.4–100) and SF-36 physical component score of 94.1.


The rates of LARS ACL construct failure (33.3%) in this cohort are high and based on these results the LARS should not be considered as a graft option for primary ACL reconstruction.

Level of evidence

III, cohort study.


LARS Ligament Augmentation and Reconstruction System ACL Anterior cruciate ligament Knee ligament Synthetic ligament Synthetic graft Knee Sports knee Knee surgery Reconstruction ACL reconstruction 



No funding.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Ethics approval for the study was provided by the Epworth Health Care Human Research and Ethics Sub-Committee—reference number LR246-15.


  1. 1.
    Adachi N, Ochi M, Uchio Y, Sakai Y, Kuriwaka et al (2003) Harvesting hamstring tendons for ACL reconstruction influences post operative hamstring muscle performance. Arch Orthop Trauma Surg 123(9):460–465PubMedGoogle Scholar
  2. 2.
    Arnauw G, Verdonk R, Harth A, Moerman J, Vorlat P et al (1991) Prosthetic versus tendon allograft replacement of ACL-deficient knees. Acta Orthop Belg 57(2):67–74PubMedGoogle Scholar
  3. 3.
    Batty L, Norsworthy C, Lash N, Wasiak J, Richmond A et al (2015) Synthetic devices for reconstructive surgery of the cruciate ligaments: a systematic review. Arthroscopy 31(5):957–968PubMedGoogle Scholar
  4. 4.
    Barrett GR, Lawrence LL, Shelton WR, Manning JO, Phelps R (1993) The Dacron ligament prosthesis in anterior cruciate ligament reconstruction. A four year review. Am J Sports Med 21(3):367–373PubMedGoogle Scholar
  5. 5.
    Cerulli G, Antinolfi P, Bruè S, Placella G, Sebastiani E et al (2011) Clinical experience using biomaterials in the knee. GIOT 37(1):159–166Google Scholar
  6. 6.
    Denti M, Bigoni M, Dodaro G, Monteleone M, Arosio A (1995) Long-term results of the Leeds–Keio anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 3(2):75–77PubMedGoogle Scholar
  7. 7.
    Dericks G (1995) Ligament advanced reinforcement system anterior cruciate ligament reconstruction. Oper Tech Sports Med 3(3):187–205Google Scholar
  8. 8.
    Fan Q, Fan J (2008) Comparison between four-strand semitendinosus tendon autograft and ligament advanced reinforcement system for anterior cruciate ligament reconstruction by arthroscopy. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 22(6):676–679PubMedGoogle Scholar
  9. 9.
    Funk J (1987) Synthetic ligaments—current status. Clin Orthop Relat Res 219:107–111Google Scholar
  10. 10.
    Guidoin MF, Marois Y, Bejui J, Poddevin N, King MW et al (2000) Analysis of retrieved polymer fiber based replacements for the ACL. Biomaterials 21(23):2461–2474PubMedGoogle Scholar
  11. 11.
    Iliadis DP, Bourlos DN, Mastrokalos DS, Chronopoulos E, Babis GC (2016) LARS artificial ligament versus ABC purely polyester ligament for anterior cruciate ligament reconstruction. Orthop J Sports Med 4(6):2325967116653359PubMedPubMedCentralGoogle Scholar
  12. 12.
    James SL, Woods GW, Homsy CA, Prewitt JM 3rd, Slocum DB (1979) Cruciate ligament stents in reconstruction of the unstable knee. A preliminary report. Clin Orthop Relat Res 143:90–96Google Scholar
  13. 13.
    Janssen R, Scheffler S (2014) Intra-articular remodelling of hamstring tendon grafts after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 22(9):2102–2108PubMedGoogle Scholar
  14. 14.
    Kamien PM, Hydrick JM, Replogle WH, Go LT, Barrett GR (2013) Age, graft size, and Tegner activity level as predictors of failure in anterior cruciate ligament reconstruction with hamstring autograft. Am J Sports Med 41(8):1808–1812PubMedPubMedCentralGoogle Scholar
  15. 15.
    Kartus J, Movin T, Karlsson J (2001) Donor-site morbidity and anterior knee problems after anterior cruciate ligament reconstruction using autografts. Arthroscopy 17(9):971–980PubMedGoogle Scholar
  16. 16.
    Kennedy JC, Hawkins RJ, Willis RB, Danylchuck KD (1976) Tension studies of human knee ligaments. Yield point, ultimate failure, and disruption of the cruciate and tibial collateral ligaments. J Bone Joint Surg Am 58(3):350–355PubMedGoogle Scholar
  17. 17.
    Leys T, Salmon LJ, Waller A, Linklater J, Pinczewski LA (2012) Clinical results and risk factors for reinjury 15 years after anterior cruciate ligament reconstruction: a prospective study of hamstring and patellar tendon grafts. Am J Sports Med 40(3):595–605PubMedGoogle Scholar
  18. 18.
    Liu ZT, Zhang XL, Jiang Y, Zeng BF (2010) Four-strand hamstring tendon autograft versus LARS artificial ligament for anterior cruciate ligament reconstruction. Int Orthop 34(1):45–49PubMedGoogle Scholar
  19. 19.
    Macnicol MF, Penny ID, Sheppard L (1991) Early results of the Leeds–Keio anterior cruciate ligament replacement. J Bone Joint Surg Br 73(3):377–380PubMedGoogle Scholar
  20. 20.
    Maletius W, Gillquist J (1997) Long-term results of anterior cruciate ligament reconstruction with a Dacron prosthesis. The frequency of osteoarthritis after seven to eleven years. Am J Sports Med 25(3):288–293PubMedGoogle Scholar
  21. 21.
    McPherson GK, Mendenhall HV, Gibbons DF, Plenk H, Rottmann W et al (1985) Experimental mechanical and histologic evaluation of the Kennedy ligament augmentation device. Clin Orthop Relat Res. 196:186–195Google Scholar
  22. 22.
    Mohtadi NG, Chan DS, Dainty KN, Whelan DB (2011) Patellar tendon versus hamstring tendon autograft for anterior cruciate ligament rupture in adults. Cochrane Database Syst Rev 7(9):CD005960Google Scholar
  23. 23.
    Murray AW, Macnicol MF (2004) 10–16 year results of Leeds–Keio anterior cruciate ligament reconstruction. Knee 11(1):9–14PubMedGoogle Scholar
  24. 24.
    Mulford JS, Chen D (2011) Anterior cruciate ligament reconstruction: a systematic review of polyethylene terephthalate grafts. ANZ J Surg 81(11):785–789PubMedGoogle Scholar
  25. 25.
    Mulford JS, Hutchinson SE, Hang JR (2013) Outcomes for primary anterior cruciate reconstruction with the quadriceps autograft: a systematic review. Knee Surg Sports Traumatol Arthrosc 21(8):1882–1888PubMedGoogle Scholar
  26. 26.
    Musahl V, Plakseychuk A, VanScyoc A, Sasaki T, Debski RE et al (2005) Varying femoral tunnels between the anatomical footprint and isometric positions: effect on kinematics of the anterior cruciate ligament-reconstructed knee. Am J Sports Med 33(5):712–718PubMedPubMedCentralGoogle Scholar
  27. 27.
    Nau T, Lavoie P, Duval N (2002) A new generation of artificial ligaments in reconstruction of the anterior cruciate ligament: two-year follow-up of a randomised trial. J Bone Joint Surg Br 84(3):356–360PubMedGoogle Scholar
  28. 28.
    Newman S, Atkinson H, Willis-Owen C (2013) Anterior cruciate ligament reconstruction with the ligament augmentation and reconstruction system: a systematic review. Int Orthop 37(2):321–326PubMedGoogle Scholar
  29. 29.
    Noble CA. The Stryker Dacron ligament in chronic anterior cruciate ligament tears. Am J Sports Med 17(5):723–723Google Scholar
  30. 30.
    Pan X, Wen H, Wang L, Ge T (2013) Bone-patellar tendon-bone autograft versus LARS artificial ligament for anterior cruciate ligament reconstruction. Eur J Orthop Surg Traumatol 23(7):819–823PubMedGoogle Scholar
  31. 31.
    Parchi P, Gianluca C, Dolfi L, Baluganti A et al (2013) Anterior cruciate ligament reconstruction with LARS™ artificial ligament results at a mean follow-up of eight years. Int Orthop 37(8):1567–1574PubMedPubMedCentralGoogle Scholar
  32. 32.
    Poddevin N, King MW, Guidoin RG (1997) Failure mechanisms of anterior cruciate ligament prostheses: in vitro wear study. J Biomed Mater Res 38(4):370–381PubMedGoogle Scholar
  33. 33.
    Pullen WM, Bryant B, Gaskill T, Sicignano N, Evans AM et al (2016) Predictors of revision surgery after anterior cruciate ligament reconstruction. Am J Sports Med 44(12):3140–3145PubMedGoogle Scholar
  34. 34.
    Rading J, Peterson L (1995) Clinical experience with the Leeds–Keio artificial ligament in anterior cruciate ligament reconstruction. A prospective two-year follow-up study. Am J Sports Med 23(3):316–319PubMedGoogle Scholar
  35. 35.
    Shaffer B, Gow W, Tibone JE (1993) Graft-tunnel mismatch in endoscopic anterior cruciate ligament reconstruction: a new technique of intraarticular measurement and modified graft harvesting. Arthroscopy 9(6):633–646PubMedGoogle Scholar
  36. 36.
    Strum G, Larson RL (1985) Clinical experience and early results of carbon fiber augmentation of anterior cruciate ligament reconstruction of the knee. Clin Orthop Relat Res 196:124–138Google Scholar
  37. 37.
    Tiefenboeck T, Thurmaier E, Tiefenboeck M, Ostermann RC, Joestl J et al (2015) Clinical and functional outcome after anterior cruciate ligament reconstruction using the LARS™ system at a minimum follow-up of 10 years. Knee 22(6):565–568PubMedGoogle Scholar
  38. 38.
    Tulloch SJ, Devitt BM, Norsworthy CJ, Mow C (2018) Synovitis following anterior cruciate ligament reconstruction using the LARS device. Knee Surg Sports Traumatol Arthrosc. CrossRefPubMedGoogle Scholar
  39. 39.
    Ventura A, Terzaghi C, Legnani C, Borgo E, Albisetti W (2010) Synthetic grafts for anterior cruciate ligament rupture: 19-year outcome study. Knee 17(2):108–113PubMedGoogle Scholar
  40. 40.
    Wang C-L, Hsiao C-K, Hsu A-T, Dung C-Z, Chang C-H (2012) Biocompatibility and mechanical property of LARS artificial ligament with tissue ingrowth. J Mech Med Biol 12(1):1250012Google Scholar
  41. 41.
    Webster KE, Feller JA, Hartnett N, Leigh WB, Richmond AK (2016) Comparison of patellar tendon and hamstring tendon anterior cruciate ligament reconstruction: a 15-year follow-up of a randomized controlled trial. Am J Sports Med 44(1):83–90PubMedGoogle Scholar
  42. 42.
    Weiss AB, Blazina ME, Goldstein AR, Alexander H (1985) Ligament replacement with an absorbable copolymer carbon fiber scaffold—early clinical experience. Clin Orthop Relat Res 196:77–85Google Scholar
  43. 43.
    Wilk RM, Richmond JC (1993) Dacron ligament reconstruction for chronic anterior cruciate ligament insufficiency. Am J Sports Med 21(3):374–379PubMedGoogle Scholar
  44. 44.
    Xu X, Huang T, Liu Z, Wen H, Ye L et al (2014) Hamstring tendon autograft versus LARS artificial ligament for arthroscopic posterior cruciate ligament reconstruction in a long-term follow-up. Arch Orthop Trauma Surg 134(12):1753–1759PubMedGoogle Scholar
  45. 45.
    Zhenyu J, Xue C, Wang W, Liu T, Huang X et al (2017) Clinical outcomes of anterior cruciate ligament reconstruction using LARS artificial graft with an at least 7-year follow-up. Medicine (Baltimore) 96(14):e6568Google Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2019

Authors and Affiliations

  1. 1.Alfred HealthSandringhamAustralia
  2. 2.Epworth HospitalRichmondAustralia

Personalised recommendations