Advertisement

Slope-reducing tibial osteotomy decreases ACL-graft forces and anterior tibial translation under axial load

  • Florian B. Imhoff
  • Julian Mehl
  • Brendan J. Comer
  • Elifho Obopilwe
  • Mark P. Cote
  • Matthias J. Feucht
  • James D. Wylie
  • Andreas B. ImhoffEmail author
  • Robert A. Arciero
  • Knut Beitzel
KNEE
  • 67 Downloads

Abstract

Purpose

Posterior tibial slope (PTS) represents an important risk factor for anterior cruciate ligament (ACL) graft failure, as seen in clinical studies. An anterior closing wedge osteotomy for slope reduction was performed to investigate the effect on ACL-graft forces and femoro-tibial kinematics in an ACL-deficient and ACL-reconstructed knee in a biomechanical setup.

Methods

Ten cadaveric knees with a relatively high native slope (mean ± SD): (slope 10° ± 1.4°, age 48.2 years ± 5.8) were selected based on prior CT measurements. A 10° anterior closing-wedge osteotomy was fixed with an external fixator in the ACL-deficient and ACL-reconstructed knee (quadruple Semi-T/Gracilis-allograft). Each condition was randomly tested with both the native tibial slope and the post-osteotomy reduced slope. Axial loads (200 N, 400 N), anterior tibial draw (134 N), and combined loads were applied to the tibia while mounted on a free moving and rotating X–Y table. Throughout testing, 3D motion tracking captured anterior tibial translation (ATT) and internal tibial rotation (ITR). Change of forces on the reconstructed ACL-graft (via an attached load-cell) were recorded, as well.

Results

ATT was significantly decreased after slope reduction in the ACL-deficient knee by 4.3 mm ± 3.6 (p < 0.001) at 200 N and 6.2 mm ± 4.3 (p < 0.001) at 400N of axial load. An increase of ITR of 2.3° ±2.8 (p < 0.001) at 200 N and by 4.0° ±4.1 (p < 0.001) at 400 N was observed after the osteotomy. In the ACL-reconstructed knee, ACL-graft forces decreased after slope reduction osteotomy by a mean of 14.7 N ± 9.8 (p < 0.001) at 200 N and 33.8 N ± 16.3 (p < 0.001) at 400N axial load, which equaled a relative decrease by a mean of 17.0% (SD ± 9.8%), and 33.1% (SD ± 18.1%), respectively. ATT and ITR were not significantly changed in the ACL-reconstructed knee. Testing of a tibial anterior drawing force in the ACL-deficient knee led to a significantly increased ATT by 2.7 mm ± 3.6 (p < 0.001) after the osteotomy. The ACL-reconstructed knee did not show a significant change (n.s.) in ATT after the osteotomy. However, ACL-graft forces detected a significant increase by 13.0 N ± 8.3 (p < 0.001) after the osteotomy with a tibial anterior drawer force, whereas the additional axial loading reduced this difference due to the osteotomy (5.3 N ± 12.6 (n.s.)).

Conclusions

Slope-reducing osteotomy decreased anterior tibial translation in the ACL-deficient and ACL-reconstructed knee under axial load, while internal rotation of the tibia increased in the ACL-deficient status after osteotomy. Especially in ACL revision surgery, the osteotomy protects the reconstructed ACL with significantly lower forces on the graft under axial load.

Keywords

ACL-Revision Slope reduction Osteotomy Ligament forces 

Notes

Funding

The University of Connecticut Health Center/UConn Musculoskeletal Institute has received direct funding and material support from Arthrex Inc. (Naples. Fl.) The company had no influence on study design, data collection or interpretation of the results or the final manuscript.

Compliance with ethical standards

Conflict of interest

Authors Imhoff FB, Mehl J, Comer B, Obopilwe E, Cote M, Feucht MJ, Wylie JD, declare that they have no conflict of interest. Author Imhoff AB is a consultant for Arthrosurface, Arthrex, and mediBayreuth. Author Arciero RA received an educational and institutional grant from Arthrex and is a consultant for Biorez. Author Beitzel K is a consultant for Arthrex. No-one of the above-mentioned authors has received personal financial support related to this study.

Ethical approval

This study was reported to the institutional review board (IRB) of the University of Connecticut, Farmington, CT, USA (IRB Mech-18-1). It was documented that de-identified specimens do not constitute human subjects research, and no further IRB approval was required.

Supplementary material

167_2019_5360_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 18 KB)

References

  1. 1.
    Agneskirchner JD, Hurschler C, Stukenborg-Colsman C, Imhoff AB, Lobenhoffer P (2004) Effect of high tibial flexion osteotomy on cartilage pressure and joint kinematics: a biomechanical study in human cadaveric knees. Winner of the AGA-DonJoy Award 2004. Arch Orthop Trauma Surg 124:575–584CrossRefGoogle Scholar
  2. 2.
    Christensen JJ, Krych AJ, Engasser WM, Vanhees MK, Collins MS, Dahm DL (2015) Lateral tibial posterior slope is increased in patients with early graft failure after anterior cruciate ligament reconstruction. Am J Sports Med 43:2510–2514CrossRefGoogle Scholar
  3. 3.
    Dejour D, La Barbera G, Pasqualotto S, Valoroso M, Nover L, Reynolds R et al (2017) Sagittal plane corrections around the knee. J Knee Surg 30:736–745CrossRefGoogle Scholar
  4. 4.
    Dejour D, Saffarini M, Demey G, Baverel L (2015) Tibial slope correction combined with second revision ACL produces good knee stability and prevents graft rupture. Knee Surg Sports Traumatol Arthrosc 23:2846–2852CrossRefGoogle Scholar
  5. 5.
    Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg Br 76:745–749CrossRefGoogle Scholar
  6. 6.
    Fening SD, Kovacic J, Kambic H, McLean S, Scott J, Miniaci A (2008) The effects of modified posterior tibial slope on anterior cruciate ligament strain and knee kinematics: a human cadaveric study. J Knee Surg 21:205–211CrossRefGoogle Scholar
  7. 7.
    Feucht MJ, Mauro CS, Brucker PU, Imhoff AB, Hinterwimmer S (2013) The role of the tibial slope in sustaining and treating anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 21:134–145CrossRefGoogle Scholar
  8. 8.
    Fleming BC, Renstrom PA, Beynnon BD, Engstrom B, Peura GD, Badger GJ et al (2001) The effect of weightbearing and external loading on anterior cruciate ligament strain. J Biomech 34:163–170CrossRefGoogle Scholar
  9. 9.
    Fritsch B, Figueroa F, Semay B (2017) Graft preparation technique to optimize hamstring graft diameter for anterior cruciate ligament reconstruction. Arthrosc Tech 6:e2169–e2175CrossRefGoogle Scholar
  10. 10.
    Giffin JR, Stabile KJ, Zantop T, Vogrin TM, Woo SL, Harner CD (2007) Importance of tibial slope for stability of the posterior cruciate ligament deficient knee. Am J Sports Med 35:1443–1449CrossRefGoogle Scholar
  11. 11.
    Giffin JR, Vogrin TM, Zantop T, Woo SL, Harner CD (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 32:376–382CrossRefGoogle Scholar
  12. 12.
    Gifstad T, Drogset JO, Viset A, Grontvedt T, Hortemo GS (2013) Inferior results after revision ACL reconstructions: a comparison with primary ACL reconstructions. Knee Surg Sports Traumatol Arthrosc 21:2011–2018CrossRefGoogle Scholar
  13. 13.
    Hamner DL, Brown CH Jr, Steiner ME, Hecker AT, Hayes WC (1999) Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques. J Bone Jt Surg Am 81:549–557CrossRefGoogle Scholar
  14. 14.
    Hashemi J, Chandrashekar N, Gill B, Beynnon BD, Slauterbeck JR, Schutt RC Jr et al (2008) The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Jt Surg Am 90:2724–2734CrossRefGoogle Scholar
  15. 15.
    Jung KH, Cho SD, Park KB, Youm YS (2012) Relation between mucoid degeneration of the anterior cruciate ligament and posterior tibial slope. Arthroscopy 28:502–506CrossRefGoogle Scholar
  16. 16.
    Kvist J, Kartus J, Karlsson J, Forssblad M (2014) Results from the Swedish national anterior cruciate ligament register. Arthroscopy 30:803–810CrossRefGoogle Scholar
  17. 17.
    Lee CC, Youm YS, Cho SD, Jung SH, Bae MH, Park SJ et al (2018) Does Posterior Tibial Slope Affect Graft Rupture Following ACL Reconstruction? Arthroscopy;10.1016/j.arthro.2018.01.058Google Scholar
  18. 18.
    Li Y, Hong L, Feng H, Wang Q, Zhang J, Song G et al (2014) Posterior tibial slope influences static anterior tibial translation in anterior cruciate ligament reconstruction: a minimum 2-year follow-up study. Am J Sports Med 42:927–933CrossRefGoogle Scholar
  19. 19.
    Lind M, Lund B, Fauno P, Said S, Miller LL, Christiansen SE (2012) Medium to long-term follow-up after ACL revision. Knee Surg Sports Traumatol Arthrosc 20:166–172CrossRefGoogle Scholar
  20. 20.
    Markolf KL, Bargar WL, Shoemaker SC, Amstutz HC (1981) The role of joint load in knee stability. J Bone Joint Surg Am 63:570–585CrossRefGoogle Scholar
  21. 21.
    Marouane H, Shirazi-Adl A, Hashemi J (2015) Quantification of the role of tibial posterior slope in knee joint mechanics and ACL force in simulated gait. J Biomech 48:1899–1905CrossRefGoogle Scholar
  22. 22.
    Martineau PA, Fening SD, Miniaci A (2010) Anterior opening wedge high tibial osteotomy: the effect of increasing posterior tibial slope on ligament strain. Can J Surg 53:261–267Google Scholar
  23. 23.
    McLean SG, Oh YK, Palmer ML, Lucey SM, Lucarelli DG, Ashton-Miller JA et al (2011) The relationship between anterior tibial acceleration, tibial slope, and ACL strain during a simulated jump landing task. J Bone Jt Surg Am 93:1310–1317CrossRefGoogle Scholar
  24. 24.
    Meyer EG, Haut RC (2005) Excessive compression of the human tibio-femoral joint causes ACL rupture. J Biomech 38:2311–2316CrossRefGoogle Scholar
  25. 25.
    Rahnemai-Azar AA, Abebe ES, Johnson P, Labrum J, Fu FH, Irrgang JJ et al (2017) Increased lateral tibial slope predicts high-grade rotatory knee laxity pre-operatively in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 25:1170–1176CrossRefGoogle Scholar
  26. 26.
    Sabzevari S, Rahnemai-Azar AA, Shaikh HS, Arner JW, Irrgang JJ, Fu FH (2017) Increased lateral tibial posterior slope is related to tibial tunnel widening after primary ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 25:3906–3913CrossRefGoogle Scholar
  27. 27.
    Salmon LJ, Heath E, Akrawi H, Roe JP, Linklater J, Pinczewski LA (2018) 20-Year outcomes of anterior cruciate ligament reconstruction with hamstring tendon autograft: the catastrophic effect of age and posterior tibial slope. Am J Sports Med 46:531–543CrossRefGoogle Scholar
  28. 28.
    Shelburne KB, Kim HJ, Sterett WI, Pandy MG (2011) Effect of posterior tibial slope on knee biomechanics during functional activity. J Orthop Res 29:223–231CrossRefGoogle Scholar
  29. 29.
    Sonnery-Cottet B, Mogos S, Thaunat M, Archbold P, Fayard JM, Freychet B et al (2014) Proximal tibial anterior closing wedge osteotomy in repeat revision of anterior cruciate ligament reconstruction. Am J Sports Med 42:1873–1880CrossRefGoogle Scholar
  30. 30.
    Southam BR, Colosimo AJ, Grawe B (2018) Underappreciated factors to consider in revision anterior cruciate ligament reconstruction: a current concepts review. Orthop J Sports Med 6:2325967117751689Google Scholar
  31. 31.
    Voos JE, Suero EM, Citak M, Petrigliano FP, Bosscher MR, Citak M et al (2012) Effect of tibial slope on the stability of the anterior cruciate ligament-deficient knee. Knee Surg Sports Traumatol Arthrosc 20:1626–1631CrossRefGoogle Scholar
  32. 32.
    Wang HD, Gao SJ, Zhang YZ (2018) Comparison of clinical outcomes after anterior cruciate ligament reconstruction using a hybrid graft versus a hamstring autograft. Arthroscopy 34:1508–1516CrossRefGoogle Scholar
  33. 33.
    Webb JM, Salmon LJ, Leclerc E, Pinczewski LA, Roe JP (2013) Posterior tibial slope and further anterior cruciate ligament injuries in the anterior cruciate ligament-reconstructed patient. Am J Sports Med 41:2800–2804CrossRefGoogle Scholar
  34. 34.
    Wegrzyn J, Chouteau J, Philippot R, Fessy MH, Moyen B (2009) Repeat revision of anterior cruciate ligament reconstruction: a retrospective review of management and outcome of 10 patients with an average 3-year follow-up. Am J Sports Med 37:776–785CrossRefGoogle Scholar
  35. 35.
    Williams RJ 3rd, Hyman J, Petrigliano F, Rozental T, Wickiewicz TL (2005) Anterior cruciate ligament reconstruction with a four-strand hamstring tendon autograft. Surgical technique. J Bone Jt Surg Am 87(Suppl 1):51–66CrossRefGoogle Scholar
  36. 36.
    Wright RW, Gill CS, Chen L, Brophy RH, Matava MJ, Smith MV et al (2012) Outcome of revision anterior cruciate ligament reconstruction: a systematic review. J Bone Jt Surg Am 94:531–536CrossRefGoogle Scholar
  37. 37.
    Yamaguchi KT, Cheung EC, Markolf KL, Boguszewski DV, Mathew J, Lama CJ et al (2018) Effects of anterior closing wedge tibial osteotomy on anterior cruciate ligament force and knee kinematics. Am J Sports Med 46:370–377CrossRefGoogle Scholar
  38. 38.
    Zeng C, Cheng L, Wei J, Gao SG, Yang TB, Luo W et al (2014) The influence of the tibial plateau slopes on injury of the anterior cruciate ligament: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 22:53–65CrossRefGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2019

Authors and Affiliations

  • Florian B. Imhoff
    • 1
    • 2
  • Julian Mehl
    • 1
    • 2
  • Brendan J. Comer
    • 2
  • Elifho Obopilwe
    • 2
  • Mark P. Cote
    • 2
  • Matthias J. Feucht
    • 1
  • James D. Wylie
    • 2
    • 3
  • Andreas B. Imhoff
    • 1
    Email author
  • Robert A. Arciero
    • 2
  • Knut Beitzel
    • 1
    • 2
  1. 1.Department of Orthopaedic Sports SurgeryTechnical University of MunichMunichGermany
  2. 2.Department of Orthopaedic SurgeryUniversity of ConnecticutFarmingtonUSA
  3. 3.Department of Orthopedic SurgeryBoston Children’s HospitalBostonUSA

Personalised recommendations