Advertisement

Meniscal extrusion is positively correlated with the anatomical position changes of the meniscal anterior and posterior horns, following medial meniscal allograft transplantation

  • Nam-Ki Kim
  • Seong-Il BinEmail author
  • Jong-Min Kim
  • Bum-Sik Lee
  • Chang-Rack Lee
KNEE
  • 248 Downloads

Abstract

Purpose

The purpose was to analyse the correlation between meniscal extrusion and position changes of the anterior horn and posterior horn after medial meniscal allograft transplantation.

Methods

Patients (n = 68) who underwent medial MAT were included. Anatomical positions of the anterior horn and posterior horn were measured, before and after surgery, using magnetic resonance images in the coronal and sagittal planes. The absolute and relative delta values of the anatomical positions were obtained, and the absolute and relative meniscal extrusion measurements were taken.

Results

In the coronal plane, the absolute position change of anterior horn showed moderate positive correlation with the absolute and relative meniscal extrusion. The relative position change of anterior horn showed moderate positive correlation with the absolute and relative meniscal extrusion. The absolute position change of posterior horn showed moderate positive correlation with the absolute and relative meniscal extrusion. The relative position change of posterior horn showed moderate positive correlation with the absolute and relative meniscal extrusion. In the sagittal plane, both absolute and relative position change of anterior horn showed no correlation with the absolute and relative meniscal extrusion, respectively. Both absolute and relative position changes of posterior horn showed nonsignificant weak correlation with the absolute and relative meniscal extrusion, respectively.

Conclusion

Transplanting the meniscus close to its native position may reduce subluxation in medial meniscal allograft transplantation. As position changes in the coronal plane can affect the meniscal subluxation more than changes in the sagittal plane, the tibial bone tunnel should be carefully created in the correct anatomical position to avoid a large amount of coronal deviation.

Level of evidence

Retrospective case series, IV.

Keywords

Meniscus Transplantation Extrusion Subluxation Allograft 

Notes

Funding

No external funding was used.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

References

  1. 1.
    Emmanuel K, Quinn E, Niu J, Guermazi A, Roemer F, Wirth W et al (2016) Quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis—data from the osteoarthritis initiative. Osteoarthritis Cartilage 24:262–269CrossRefGoogle Scholar
  2. 2.
    Guenther WC (1977) Desk calculation of probabilities for the distribution of the sample correlation coefficient. Am Stat 31:45–48Google Scholar
  3. 3.
    Guermazi A, Eckstein F, Hayashi D, Roemer FW, Wirth W, Yang T et al (2015) Baseline radiographic osteoarthritis and semi-quantitatively assessed meniscal damage and extrusion and cartilage damage on MRI is related to quantitatively defined cartilage thickness loss in knee osteoarthritis: the Multicenter Osteoarthritis Study. Osteoarthritis Cartilage 23:2191–2198CrossRefGoogle Scholar
  4. 4.
    Jeon B, Kim JM, Kim JM, Lee CR, Kim KA, Bin SI (2015) An osteophyte in the tibial plateau is a risk factor for allograft extrusion after meniscus allograft transplantation. Am J Sports Med 43:1215–1221CrossRefGoogle Scholar
  5. 5.
    Kim JH, Lee S, Ha DH, Lee SM, Jung K, Choi W (2018) The effects of graft shrinkage and extrusion on early clinical outcomes after meniscal allograft transplantation. J Orthop Surg Res 13:181–187CrossRefGoogle Scholar
  6. 6.
    Kim JM, Lee BS, Kim KH, Kim KA, Bin SI (2012) Results of meniscus allograft transplantation using bone fixation: 110 cases with objective evaluation. Am J Sports Med 40:1027–1034CrossRefGoogle Scholar
  7. 7.
    Kim NK, Bin SI, Kim JM, Lee CR (2016) Does lateral meniscal allograft transplantation using the keyhole technique restore the anatomic location of the native lateral meniscus? Am J Sports Med 44:1744–1752CrossRefGoogle Scholar
  8. 8.
    Kim NK, Bin SI, Kim JM, Lee CR (2015) Does medial meniscal allograft transplantation with the bone-plug technique restore the anatomic location of the native medial meniscus? Am J Sports Med 43:3045–3054CrossRefGoogle Scholar
  9. 9.
    Kim YS, Kang KT, Son J, Kwon OR, Choi YJ, Jo SB et al (2015) Graft extrusion related to the position of allograft in lateral meniscal allograft transplantation: biomechanical comparison between parapatellar and transpatellar approaches using finite element analysis. Arthroscopy 31:2380–2391CrossRefGoogle Scholar
  10. 10.
    Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163CrossRefGoogle Scholar
  11. 11.
    Lee AS, Kang RW, Kroin E, BVerma NK, Cole BJ (2012) Allograft meniscus transplantation. Sports Med Arthrosc Rev 20:106–114CrossRefGoogle Scholar
  12. 12.
    Lee DH (2018) Incidence and extent of graft extrusion following meniscus allograft transplantation. Biomed Res Int 2018:5251910PubMedPubMedCentralGoogle Scholar
  13. 13.
    Lee DH, Kim JM, Jeon JH, Cha EJ, Bin SI (2015) Effect of sagittal allograft position on coronal extrusion in lateral meniscus allograft transplantation. Arthroscopy 31:266–274CrossRefGoogle Scholar
  14. 14.
    Lee DH, Kim JM, Lee BS, Kim KA, Bin SI (2012) Greater axial trough obliquity increases the risk of graft extrusion in lateral meniscus allograft transplantation. Am J Sports Med 40:1597–1605CrossRefGoogle Scholar
  15. 15.
    Lee DH, Kim SB, Kim TH, Cha EJ, Bin SI (2010) Midterm outcomes after meniscal allograft transplantation: comparison of cases with extrusion versus without extrusion. Am J Sports Med 38:247–254CrossRefGoogle Scholar
  16. 16.
    Lee DH, Lee CR, Jeon JH, Kim KA, Bin SI (2015) Graft extrusion in both the coronal and sagittal planes is greater after medial compared with lateral meniscus allograft transplantation but is unrelated to early clinical outcomes. Am J Sports Med 43:213–219CrossRefGoogle Scholar
  17. 17.
    Lee DW, Lee JH, Kim DH, Kim JG (2018) Delayed rehabilitation after lateral meniscal allograft transplantation can reduce graft extrusion compared with standard rehabilitation. Am J Sports Med 46:2432–2440CrossRefGoogle Scholar
  18. 18.
    Lee DW, Park JH, Chung KS, Ha JK, Kim JG (2017) Arthroscopic medial meniscal allograft transplantation with modified bone plug technique. Arthrosc Tech 6:e1437–e1442CrossRefGoogle Scholar
  19. 19.
    Mahmoud A, Young J, Bullock-Saxton J, Myers P (2018) Meniscal allograft transplantation: the effect of cartilage status on survivorship and clinical outcome. Arthroscopy 34:1871–1876CrossRefGoogle Scholar
  20. 20.
    Mukaka MM (2012) A guide to appropriate use of correlation coefficient in medical research. Malawi Med J 24:69–71PubMedPubMedCentralGoogle Scholar
  21. 21.
    Pollard ME, Kang Q, Berg EE (1995) Radiographic sizing for meniscal transplantation. Arthroscopy 11:684–687CrossRefGoogle Scholar
  22. 22.
    Saltzman BM, Cotter EJ, Stephens JP, Cvetanovich GL, Madden B, Wang K et al (2018) Preoperative tibial subchondral bone marrow lesion patterns and associations with outcomes after isolated meniscus allograft transplantation. Am J Sports Med 46:1175–1184CrossRefGoogle Scholar
  23. 23.
    Verdonk P, Depaepe Y, Desmyter S, De Muynck M, Almqvist KF, Verstraete K et al (2004) Normal and transplanted lateral knee menisci: evaluation of extrusion using magnetic resonance imaging and ultrasound. Knee Surg Sports Traumatol Arthrosc 12:411–419CrossRefGoogle Scholar
  24. 24.
    Verdonk R, Volpi P, Verdonk P, Bracht HVD, Laer MV, Almqvist KF et al (2013) Indications and limits of meniscal allografts. Injury 44:S21–S27CrossRefGoogle Scholar
  25. 25.
    von Lewinski G, Kohn D, Wirth CJ, Lazovic D (2008) The influence of nonanatomical insertion and incongruence of meniscal transplants on the articular cartilage in an ovine model. Am J Sports Med 36:841–850CrossRefGoogle Scholar
  26. 26.
    Vundelinckx B, Vanlauwe J, Bellemans J (2014) Long-term Subjective, clinical, and radiographic outcome evaluation of meniscal allograft transplantation in the knee. Am J Sports Med 42:1592–1599CrossRefGoogle Scholar
  27. 27.
    Wang Y, Wluka AE, Pelletier JP, Martel-Pelletier J, Abram F, Ding C et al (2010) Meniscal extrusion predicts increases in subchondral bone marrow lesions and bone cysts and expansion of subchondral bone in osteoarthritic knees. Rheumatology 49:997–1004CrossRefGoogle Scholar
  28. 28.
    Wilmes P, Anagnostakos K, Weth C, Kohn D, Seil R (2008) The reproducibility of radiographic measurement of medial meniscus horn position. Arthroscopy 24:660–668CrossRefGoogle Scholar
  29. 29.
    Wilmes P, Lorbach O, Weth C, Kohn D, Seil R (2011) Radiographic guided drilling of bony tibial tunnels for fixation of meniscus transplants using percentage references. Knee Surg Sports Traumatol Arthrosc 19:168–173CrossRefGoogle Scholar
  30. 30.
    Zhang H, Chen S, Qiu M, Zhou A, Yan W, Zhang J (2018) Lateral meniscus allograft transplantation with platelet-rich plasma injections: a minimum two-year follow-up study. Knee 25:568–576CrossRefGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2018
corrected ​publication 2018

Authors and Affiliations

  1. 1.Department of Orthopedic Surgery, College of Medicine, Asan Medical CenterUniversity of UlsanSeoulSouth Korea
  2. 2.Department of Orthopedic SurgeryRed-Cross HospitalIncheonSouth Korea
  3. 3.Department of Orthopedic Surgery, College of MedicineBusan Paik Hospital, Inje UniversityBusanSouth Korea

Personalised recommendations