Advertisement

Significant anterior enlargement of femoral tunnel aperture after hamstring ACL reconstruction, compared to bone–patellar tendon–bone graft

  • Hiroshi Amano
  • Yoshinari Tanaka
  • Keisuke Kita
  • Ryohei Uchida
  • Yuta Tachibana
  • Yasukazu Yonetani
  • Tatsuo Mae
  • Yoshiki Shiozaki
  • Shuji Horibe
Knee
  • 76 Downloads

Abstract

Purpose

This study aimed to retrospectively compare the enlargement and migration of the femoral tunnel aperture after anatomic rectangular tunnel anterior cruciate ligament (ACL) reconstruction with a bone–patella tendon–bone (BTB) or hamstring tendon (HT) graft using three-dimensional (3-D) computer models.

Methods

Thirty-two patients who underwent ACL reconstruction and postoperative computed tomography (CT) at 3 weeks and 6 months were included in this study. Of these, 20 patients underwent ACL reconstruction with a BTB graft (BTBR group), and the remaining 12 with an HT graft (HTR group). The area of the femoral tunnel aperture was extracted and measured using a 3-D computer model generated from CT images. Changes in the area and migration direction of the femoral tunnel aperture during this period were compared between the two groups.

Results

In the HTR group, the area of the femoral tunnel aperture was significantly increased at 6 months compared to 3 weeks postoperatively (P < 0.05). The average area of the femoral tunnel aperture at 6 months postoperatively was larger by 16.0 ± 12.4% in the BTBR group and 41.9 ± 22.2% in the HTR group, relative to that measured at 3 weeks postoperatively (P < 0.05). The femoral tunnel aperture migrated in the anteroinferior direction in the HTR group, and only in the inferior direction in the BTBR group.

Conclusions

The femoral tunnel aperture in the HTR group was significantly more enlarged and more anteriorly located at 6 months after ACL reconstruction, compared to the BTBR group.

Level of evidence

IV.

Keywords

Anterior cruciate ligament reconstruction Femoral tunnel enlargement Three-dimensional computer model Hamstring tendon graft Bone–patella tendon–bone graft 

Notes

Funding

No sources of fundings to declare.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical aproval

This study has been approved by the Osaka Rosai Hospital Ethics committee of Japan Organization of Occupational Health and Safety (ID 20130729-5).

References

  1. 1.
    Achtnich A, Stiepani H, Forkel P, Metzlaff S, Hanninen EL, Petersen W (2013) Tunnel widening after anatomic double-bundle and mid-position single-bundle anterior cruciate ligament reconstruction. Arthroscopy 29:1514–1524CrossRefPubMedGoogle Scholar
  2. 2.
    Amano H, Toritsuka Y, Uchida R, Mae T, Ohzono K, Shino K (2015) Outcome of anatomical double-bundle ACL reconstruction using hamstring tendons via an outside-in approach. Knee Surg Sports Traumatol Arthrosc 23:1222–1230CrossRefPubMedGoogle Scholar
  3. 3.
    Asagumo H, Kimura M, Kobayashi Y, Taki M, Takagishi K (2007) Anatomic reconstruction of the anterior cruciate ligament using double-bundle hamstring tendons: surgical techniques, clinical outcomes, and complications. Arthroscopy 23:602–609CrossRefPubMedGoogle Scholar
  4. 4.
    Baumfeld JA, Diduch DR, Rubino LJ, Hart JA, Miller MD, Barr MS et al (2008) Tunnel widening following anterior cruciate ligament reconstruction using hamstring autograft: a comparison between double cross-pin and suspensory graft fixation. Knee Surg Sports Traumatol Arthrosc 16:1108–1113CrossRefPubMedGoogle Scholar
  5. 5.
    Bernard M, Hertel P, Hornung H, Cierpinski T (1997) Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 10:14–21 (discussion 21–12) PubMedGoogle Scholar
  6. 6.
    Biswal UK, Balaji G, Nema S, Poduval M, Menon J, Patro DK (2016) Correlation of tunnel widening and tunnel positioning with short-term functional outcomes in single-bundle anterior cruciate ligament reconstruction using patellar tendon versus hamstring graft: a prospective study. Eur J Orthop Surg Traumatol 26:647–655CrossRefPubMedGoogle Scholar
  7. 7.
    Brown LG (1992) A survey of image registration techniques. ACM Comput Surv (CSUR) 24:325–376CrossRefGoogle Scholar
  8. 8.
    Buelow JU, Siebold R, Ellermann A (2002) A prospective evaluation of tunnel enlargement in anterior cruciate ligament reconstruction with hamstrings: extracortical versus anatomical fixation. Knee Surg Sports Traumatol Arthrosc 10:80–85CrossRefPubMedGoogle Scholar
  9. 9.
    Clatworthy MG, Annear P, Bulow JU, Bartlett RJ (1999) Tunnel widening in anterior cruciate ligament reconstruction: a prospective evaluation of hamstring and patella tendon grafts. Knee Surg Sports Traumatol Arthrosc 7:138–145CrossRefPubMedGoogle Scholar
  10. 10.
    Darabos N, Haspl M, Moser C, Darabos A, Bartolek D, Groenemeyer D (2011) Intraarticular application of autologous conditioned serum (ACS) reduces bone tunnel widening after ACL reconstructive surgery in a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc 19(Suppl 1):S36–S46CrossRefPubMedGoogle Scholar
  11. 11.
    Fauno P, Kaalund S (2005) Tunnel widening after hamstring anterior cruciate ligament reconstruction is influenced by the type of graft fixation used: a prospective randomized study. Arthroscopy 21:1337–1341CrossRefPubMedGoogle Scholar
  12. 12.
    Fujie H, Otsubo H, Fukano S, Suzuki T, Suzuki D, Mae T et al (2011) Mechanical functions of the three bundles consisting of the human anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 19(Suppl 1):S47–S53CrossRefPubMedGoogle Scholar
  13. 13.
    Hersekli MA, Akpinar S, Ozalay M, Ozkoc G, Cesur N, Uysal M et al (2004) Tunnel enlargement after arthroscopic anterior cruciate ligament reconstruction: comparison of bone-patellar tendon-bone and hamstring autografts. Adv Ther 21:123–131CrossRefPubMedGoogle Scholar
  14. 14.
    Hoher J, Moller HD, Fu FH (1998) Bone tunnel enlargement after anterior cruciate ligament reconstruction: fact or fiction? Knee Surg Sports Traumatol Arthrosc 6:231–240CrossRefPubMedGoogle Scholar
  15. 15.
    Inoue T, Soejima T, Murakami H, Tabuchi K, Noguchi K, Horibe S et al (2016) Anatomic oblong double bundle anterior cruciate ligament reconstruction. Kurume Med J.  https://doi.org/10.2739/kurumemedj.MS66002 CrossRefPubMedGoogle Scholar
  16. 16.
    Iwahashi T, Shino K, Nakata K, Nakamura N, Yamada Y, Yoshikawa H et al (2008) Assessment of the “functional length” of the three bundles of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 16:167–174CrossRefPubMedGoogle Scholar
  17. 17.
    Iwahashi T, Shino K, Nakata K, Otsubo H, Suzuki T, Amano H et al (2010) Direct anterior cruciate ligament insertion to the femur assessed by histology and 3-dimensional volume-rendered computed tomography. Arthroscopy 26:S13–S20CrossRefPubMedGoogle Scholar
  18. 18.
    Jarvela T, Moisala AS, Paakkala T, Paakkala A (2008) Tunnel enlargement after double-bundle anterior cruciate ligament reconstruction: a prospective, randomized study. Arthroscopy 24:1349–1357CrossRefPubMedGoogle Scholar
  19. 19.
    Kim JG, Chang MH, Lim HC, Bae JH, Ahn JH, Wang JH (2013) Computed tomography analysis of the femoral tunnel position and aperture shape of transportal and outside-in ACL reconstruction: do different anatomic reconstruction techniques create similar femoral tunnels? Am J Sports Med 41:2512–2520CrossRefPubMedGoogle Scholar
  20. 20.
    L’Insalata JC, Klatt B, Fu FH, Harner CD (1997) Tunnel expansion following anterior cruciate ligament reconstruction: a comparison of hamstring and patellar tendon autografts. Knee Surg Sports Traumatol Arthrosc 5:234–238CrossRefPubMedGoogle Scholar
  21. 21.
    Lee BH, Bansal S, Park SH, Wang JH (2015) Eccentric graft positioning within the femoral tunnel aperture in anatomic double-bundle anterior cruciate ligament reconstruction using the transportal and outside-in techniques. Am J Sports Med 43:1180–1188CrossRefPubMedGoogle Scholar
  22. 22.
    Loh JC, Fukuda Y, Tsuda E, Steadman RJ, Fu FH, Woo SL (2003) Knee stability and graft function following anterior cruciate ligament reconstruction: comparison between 11 o’clock and 10 o’clock femoral tunnel placement. 2002 Richard O’Connor Award paper. Arthroscopy 19:297–304CrossRefPubMedGoogle Scholar
  23. 23.
    Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. ACM Siggr Comput Graph 21:163–169CrossRefGoogle Scholar
  24. 24.
    Mae T, Shino K, Matsumoto N, Hamada M, Yoneda M, Nakata K (2007) Anatomical two-bundle versus Rosenberg’s isometric bi-socket ACL reconstruction: a biomechanical comparison in laxity match pretension. Knee Surg Sports Traumatol Arthrosc 15:328–334CrossRefPubMedGoogle Scholar
  25. 25.
    Mae T, Shino K, Nakata K, Toritsuka Y, Otsubo H, Fujie H (2008) Optimization of graft fixation at the time of anterior cruciate ligament reconstruction. Part I: effect of initial tension. Am J Sports Med 36:1087–1093CrossRefPubMedGoogle Scholar
  26. 26.
    Mae T, Shino K, Nakata K, Toritsuka Y, Otsubo H, Fujie H (2008) Optimization of graft fixation at the time of anterior cruciate ligament reconstruction. Part II: effect of knee flexion angle. Am J Sports Med 36:1094–1100CrossRefPubMedGoogle Scholar
  27. 27.
    Otsubo H, Shino K, Nakamura N, Nakata K, Nakagawa S, Koyanagi M (2007) Arthroscopic evaluation of ACL grafts reconstructed with the anatomical two-bundle technique using hamstring tendon autograft. Knee Surg Sports Traumatol Arthrosc 15:720–728CrossRefPubMedGoogle Scholar
  28. 28.
    Park MJ, Lee MC, Seong SC (2001) A comparative study of the healing of tendon autograft and tendon-bone autograft using patellar tendon in rabbits. Int Orthop 25:35–39CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sabat D, Kundu K, Arora S, Kumar V (2011) Tunnel widening after anterior cruciate ligament reconstruction: a prospective randomized computed tomography-based study comparing 2 different femoral fixation methods for hamstring graft. Arthroscopy 27:776–783CrossRefPubMedGoogle Scholar
  30. 30.
    Segawa H, Koga Y, Omori G, Sakamoto M, Hara T (2003) Influence of the femoral tunnel location and angle on the contact pressure in the femoral tunnel in anterior cruciate ligament reconstruction. Am J Sports Med 31:444–448CrossRefPubMedGoogle Scholar
  31. 31.
    Shimizu R, Adachi N, Ishifuro M, Nakamae A, Ishikawa M, Deie M et al (2017) Bone tunnel change develops within two weeks of double-bundle anterior cruciate ligament reconstruction using hamstring autograft: a comparison of different postoperative immobilization periods using computed tomography. Knee 24:1055–1066CrossRefPubMedGoogle Scholar
  32. 32.
    Shino K, Nakata K, Nakamura N, Toritsuka Y, Horibe S, Nakagawa S et al (2008) Rectangular tunnel double-bundle anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft to mimic natural fiber arrangement. Arthroscopy 24:1178–1183CrossRefPubMedGoogle Scholar
  33. 33.
    Shino K, Nakata K, Nakamura N, Toritsuka Y, Nakagawa S, Horibe S (2005) Anatomically oriented anterior cruciate ligament reconstruction with a bone-patellar tendon-bone graft via rectangular socket and tunnel: a snug-fit and impingement-free grafting technique. Arthroscopy 21:1402CrossRefPubMedGoogle Scholar
  34. 34.
    Siebold R (2007) Observations on bone tunnel enlargement after double-bundle anterior cruciate ligament reconstruction. Arthroscopy 23:291–298CrossRefPubMedGoogle Scholar
  35. 35.
    Siebold R, Cafaltzis K (2010) Differentiation between intraoperative and postoperative bone tunnel widening and communication in double-bundle anterior cruciate ligament reconstruction: a prospective study. Arthroscopy 26:1066–1073CrossRefPubMedGoogle Scholar
  36. 36.
    Suzuki T, Shino K, Nakagawa S, Nakata K, Iwahashi T, Kinugasa K et al (2011) Early integration of a bone plug in the femoral tunnel in rectangular tunnel ACL reconstruction with a bone-patellar tendon-bone graft: a prospective computed tomography analysis. Knee Surg Sports Traumatol Arthrosc 19(Suppl 1):S29–S35CrossRefPubMedGoogle Scholar
  37. 37.
    Tachibana Y, Mae T, Shino K, Kanamoto T, Sugamoto K, Yoshikawa H et al (2015) Morphological changes in femoral tunnels after anatomic anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 23:3591–3600CrossRefPubMedGoogle Scholar
  38. 38.
    Taketomi S, Inui H, Sanada T, Yamagami R, Tanaka S, Nakagawa T (2014) Eccentric femoral tunnel widening in anatomic anterior cruciate ligament reconstruction. Arthroscopy 30:701–709CrossRefPubMedGoogle Scholar
  39. 39.
    Tanaka Y, Shiozaki Y, Yonetani Y, Kanamoto T, Tsujii A, Horibe S (2011) MRI analysis of the attachment of the anteromedial and posterolateral bundles of anterior cruciate ligament using coronal oblique images. Knee Surg Sports Traumatol Arthrosc 19(Suppl 1):S54–S59CrossRefPubMedGoogle Scholar
  40. 40.
    Tanaka Y, Yonetani Y, Shiozaki Y, Kanamoto T, Kita K, Amano H et al (2014) MRI analysis of single-, double-, and triple-bundle anterior cruciate ligament grafts. Knee Surg Sports Traumatol Arthrosc 22:1541–1548CrossRefPubMedGoogle Scholar
  41. 41.
    Tsuda E, Fukuda Y, Loh JC, Debski RE, Fu FH, Woo SL (2002) The effect of soft-tissue graft fixation in anterior cruciate ligament reconstruction on graft-tunnel motion under anterior tibial loading. Arthroscopy 18:960–967CrossRefPubMedGoogle Scholar
  42. 42.
    Webster KE, Feller JA, Hameister KA (2001) Bone tunnel enlargement following anterior cruciate ligament reconstruction: a randomised comparison of hamstring and patellar tendon grafts with 2-year follow-up. Knee Surg Sports Traumatol Arthrosc 9:86–91CrossRefPubMedGoogle Scholar
  43. 43.
    Wilson TC, Kantaras A, Atay A, Johnson DL (2004) Tunnel enlargement after anterior cruciate ligament surgery. Am J Sports Med 32:543–549CrossRefPubMedGoogle Scholar
  44. 44.
    Xu Y, Ao Y, Wang J, Yu J, Cui G (2011) Relation of tunnel enlargement and tunnel placement after single-bundle anterior cruciate ligament reconstruction. Arthroscopy 27:923–932CrossRefPubMedGoogle Scholar
  45. 45.
    Yanagisawa S, Kimura M, Hagiwara K, Ogoshi A, Nakagawa T, Shiozawa H et al (2018) Patient age as a preoperative factor associated with tunnel enlargement following double-bundle anterior cruciate ligament reconstruction using hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc 26:1230–1236CrossRefPubMedGoogle Scholar
  46. 46.
    Yanagisawa S, Kimura M, Hagiwara K, Ogoshi A, Nakagawa T, Shiozawa H et al (2018) The remnant preservation technique reduces the amount of bone tunnel enlargement following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 26:491–499CrossRefPubMedGoogle Scholar
  47. 47.
    Zaffagnini S, Signorelli C, Lopomo N, Bonanzinga T, Marcheggiani Muccioli GM, Bignozzi S et al (2012) Anatomic double-bundle and over-the-top single-bundle with additional extra-articular tenodesis: an in vivo quantitative assessment of knee laxity in two different ACL reconstructions. Knee Surg Sports Traumatol Arthrosc 20:153–159CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2018

Authors and Affiliations

  • Hiroshi Amano
    • 1
  • Yoshinari Tanaka
    • 1
  • Keisuke Kita
    • 2
  • Ryohei Uchida
    • 3
  • Yuta Tachibana
    • 4
  • Yasukazu Yonetani
    • 5
  • Tatsuo Mae
    • 6
  • Yoshiki Shiozaki
    • 3
  • Shuji Horibe
    • 7
  1. 1.Department of Sports OrthopedicsOsaka Rosai HospitalSakaiJapan
  2. 2.Depatment of OrthpaedicsJCHO Osaka HospitalOsakaJapan
  3. 3.Department of Sports OrthopedicsSeifu HospitalSakaiJapan
  4. 4.Sports Orthopaedic Surgery CenterYukioka HospitalOsakaJapan
  5. 5.Department of Orthopaedic SurgeryHoshigaoka Medical CenterOsakaJapan
  6. 6.Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineOsakaJapan
  7. 7.Faculty of Comprehensive RehabilitationOsaka Prefecture UniversityHabikinoJapan

Personalised recommendations