Advertisement

Bony landmarks with tibial cutting surface are useful to avoid rotational mismatch in total knee arthroplasty

  • Yuan Ma
  • Hideki Mizu-uchi
  • Tetsuro Ushio
  • Satoshi Hamai
  • Yukio Akasaki
  • Koji Murakami
  • Yasuharu Nakashima
Knee

Abstract

Purpose

The purpose of this study was to define various anteroposterior axes of the tibial component as references and to evaluate their accuracy and variability using virtual surgery. It was hypothesized that (1) Akagi’s Line could result in high accuracy and low variability in varus osteoarthritic knees; (2) anteroposterior axes defined by using the tibial bony cutting surface as a landmark might be good substitutes for Akagi’s Line; and (3) extra-articular bony landmarks might influence the variability of the anteroposterior axis.

Methods

Three-dimensional bone models were reconstructed from the preoperative computed tomography data of 111 osteoarthritic knees with varus deformities. Seven different anteroposterior axes of the tibial component were defined: Akagi’s Line, Axis MED, Axis 1/6MED, Axis 1/3MED, Axis of Oval Shape, Axis of Anterior Crest, and Axis Second Metatarsus. The rotational mismatch angle was measured between the tibial anteroposterior axis and the line perpendicular to the transepicondylar axis projected on the cutting surface (positive value: external rotation of the tibial anteroposterior axis).

Results

The average rotational mismatch angles (referring to the projected anatomical/surgical epicondylar axes) were − 2.7° ± 5.8°/1.0° ± 6.0° (Akagi’s Line), − 4.2° ± 7.7°/− 0.5° ± 7.8°, 2.9° ± 7.2°/6.6° ± 7.2°, 9.8° ± 7.0°/13.5° ± 6.8° (Axis MED, Axis 1/6MED, Axis 1/3MED), − 5.1° ± 7.9°/− 1.4° ± 7.8° (Axis of Oval Shape), and 19.3 ± 9.5°/23.0° ± 9.6°, − 2.0° ± 11.3°/1.7° ± 11.4° (Axis Anterior Crest, Axis Second Metatarsus), respectively.

Conclusions

Akagi’s Line provided the best accuracy and least variability in varus osteoarthritic knees. Axis 1/6MED and Axis MED are good substitutes for Akagi’s Line due to the difficulty of identifying the attachment site of the posterior cruciate ligament after the proximal tibia has been cut. Extra-articular bony landmarks should not be used for alignment due to their high variability. This study will aid surgeons in choosing the proper anteroposterior axis of the tibial component to reduce rotational mismatch and thus achieve good clinical knee outcomes.

Levels of evidence

III.

Keywords

Total knee arthroplasty Rotational mismatch Anteroposterior axis Computer simulation Tibial component 

Abbreviations

TKA

Total knee arthroplasty

TEA

Transepicondylar axis

AEA

Anatomical epicondylar axis

SEA

Surgical epicondylar axis

CT

Computed tomography

AP

Anterior–posterior

2D

Two-dimensional

OA

Osteoarthritis

CAD

Computer-assisted design

FTA

Femoro-tibial angle

HKA

Hip–knee–ankle

3D

Three-dimensional

PCL

Posterior cruciate ligament

GC

Geometrical center

ICC

Intra-class correlation coefficient

Notes

Acknowledgements

We also particularly acknowledge the help of Simon Hitchens, M.A. B.Sc. (Hons.) in language support.

Funding

There is no funding source.

Compliance with ethical standards

Conflict of interest

The author declares that there is no competing interest.

Ethical approval

The institutional ethics committee approved all data-collection (Kyushu University, IRB ID of the Approval: 25–74).

Informed consent

All subjects provided informed consent.

References

  1. 1.
    Aglietti P, Sensi L, Cuomo P, Ciardullo A (2008) Rotational position of femoral and tibial components in TKA using the femoral transepicondylar axis. Clin Orthop Relat Res 466:2751–2755CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Akagi M, Mori S, Nishimura S, Nishimura A, Asano T, Hamanishi C (2005) Variability of extraarticular tibial rotation references for total knee arthroplasty. Clin Orthop Relat Res 436:172–176CrossRefGoogle Scholar
  3. 3.
    Akagi M, Oh M, Nonaka T, Tsujimoto H, Asano T, Hamanishi C (2004) An anteroposterior axis of the tibia for total knee arthroplasty. Clin Orthop Relat Res 420:213–219CrossRefGoogle Scholar
  4. 4.
    Asano T, Akagi M, Nakamura T (2005) The functional flexion-extension axis of the knee corresponds to the surgical epicondylar axis: in vivo analysis using a biplanar image-matching technique. J Arthroplasty 20:1060–1067CrossRefPubMedGoogle Scholar
  5. 5.
    Baldini A, Indelli PF, DE Luca L, Mariani PC, Marcucci M (2013) Rotational alignment of the tibial component in total knee arthroplasty: the anterior tibial cortex is a reliable landmark. Joints 1:155–160CrossRefPubMedGoogle Scholar
  6. 6.
    Berger RA, Rubash HE, Seel MJ, Thompson WH, Crossett LS (1993) Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin Orthop Relat Res 286:40–47Google Scholar
  7. 7.
    Bonnin MP, Saffarini M, Mercier P-E, Laurent J-R, Carrillon Y (2011) Is the anterior tibial tuberosity a reliable rotational landmark for the tibial component in total knee arthroplasty? J Arthroplasty 26:260–267CrossRefPubMedGoogle Scholar
  8. 8.
    Cobb JP, Dixon H, Dandachli W, Iranpour F (2008) The anatomical tibial axis: reliable rotational orientation in knee replacement. J Bone Joint Surg Br 90-B:1032–1038CrossRefGoogle Scholar
  9. 9.
    Dai Y, Bischoff JE (2013) Comprehensive assessment of tibial plateau morphology in total knee arthroplasty: influence of shape and size on anthropometric variability. J Orthop Res 31:1643–1652CrossRefPubMedGoogle Scholar
  10. 10.
    Dalury DF (2001) Observations of the proximal tibia in total knee arthroplasty. Clin Orthop Relat Res 389:150–155CrossRefGoogle Scholar
  11. 11.
    Hamai S, Moro-oka T-A, Dunbar NJ, Miura H, Iwamoto Y, Banks SA (2013) In vivo healthy knee kinematics during dynamic full flexion. Biomed Res Int 2013:717546–717549CrossRefGoogle Scholar
  12. 12.
    Hirschmann MT, Konala P, Amsler F, Iranpour F, Friederich NF, Cobb JP (2011) The position and orientation of total knee replacement components: a comparison of conventional radiographs, transverse 2D-CT slices and 3D-CT reconstruction. J Bone Joint Surg Br 93:629–633CrossRefPubMedGoogle Scholar
  13. 13.
    Kawahara S, Okazaki K, Matsuda S, Mitsuyasu H, Nakahara H, Okamoto S, Iwamoto Y (2013) Medial sixth of the patellar tendon at the tibial attachment is useful for the anterior reference in rotational alignment of the tibial component. Knee Surg Sports Traumatol Arthrosc 22:1070–1075CrossRefPubMedGoogle Scholar
  14. 14.
    Kellgren JH, Bier F (1956) Radiological signs of rheumatoid arthritis: a study of observer differences in the reading of hand films. Ann Rheum Dis 15:55–60CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kim CW, Seo SS, Kim JH, Roh SM, Lee CR (2014) The anteroposterior axis of the tibia in Korean patients undergoing total knee replacement. Bone Joint J 96-B:1485–1490CrossRefPubMedGoogle Scholar
  16. 16.
    Kim JI, Jang J, Lee KW, Han HS, Lee S, Lee MC (2017) Anterior tibial curved cortex is a reliable landmark for tibial rotational alignment in total knee arthroplasty. BMC Musculoskelet Disord 18:252CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kim YH, Park JW, Kim JS, Park SD (2014) The relationship between the survival of total knee arthroplasty and postoperative coronal, sagittal and rotational alignment of knee prosthesis. Int Orthop 38:379–385CrossRefPubMedGoogle Scholar
  18. 18.
    Kuriyama S, Hyakuna K, Inoue S, Tamaki Y, Ito H, Matsuda S (2014) Tibial rotational alignment was significantly improved by use of a CT-navigated control device in total knee arthroplasty. J Arthroplasty 29:2352–2356CrossRefPubMedGoogle Scholar
  19. 19.
    Lee DH, Park JH, Song DI, Padhy D, Jeong WK, Han SB (2010) Accuracy of soft tissue balancing in TKA: comparison between navigation-assisted gap balancing and conventional measured resection. Knee Surg Sports Traumatol Arthrosc 18:381–387CrossRefPubMedGoogle Scholar
  20. 20.
    Li G, Park SE, DeFrate LE, Schutzer ME, Ji L, Gill TJ, Rubash HE (2005) The cartilage thickness distribution in the tibiofemoral joint and its correlation with cartilage-to-cartilage contact. Clin Biomech (Bristol Avon) 20:736–744CrossRefGoogle Scholar
  21. 21.
    Ma Y, Mizu-uchi H, Okazaki K, Ushio T, Murakami K, Hamai S, Akasaki Y, Nakashima Y (2017) Effects of tibial baseplate shape on rotational alignment in total knee arthroplasty: three-dimensional surgical simulation using osteoarthritis knees. Arch Orthop Trauma Surg 138:105–114CrossRefPubMedGoogle Scholar
  22. 22.
    Mizu-uchi H, Colwell CW, Matsuda S, Flores-Hernandez C, Iwamoto Y, D’Lima DD (2011) Effect of total knee arthroplasty implant position on flexion angle before implant-bone impingement. J Arthroplasty 26:721–727CrossRefPubMedGoogle Scholar
  23. 23.
    Mizu-uchi H, Matsuda S, Miura H, Okazaki K, Akasaki Y, Iwamoto Y (2008) The evaluation of post-operative alignment in total knee replacement using a CT-based navigation system. J Bone Joint Surg Br 90:1025–1031CrossRefPubMedGoogle Scholar
  24. 24.
    Murakami K, Hamai S, Okazaki K, Ikebe S, Shimoto T, Hara D, Mizu-uchi H, Higaki H, Iwamoto Y (2016) In vivo kinematics of healthy male knees during squat and golf swing using image-matching techniques. Knee 23:221–226CrossRefPubMedGoogle Scholar
  25. 25.
    Nakahara H, Okazaki K, Hamai S, Kawahara S, Higaki H, Mizu-uchi H, Iwamoto Y (2015) Rotational alignment of the tibial component affects the kinematic rotation of a weight-bearing knee after total knee arthroplasty. Knee 22:201–205CrossRefPubMedGoogle Scholar
  26. 26.
    Nishikawa K, Mizu-uchi H, Okazaki K, Matsuda S, Tashiro Y, Iwamoto Y (2015) Accuracy of proximal tibial bone cut using anterior border of tibia as bony landmark in total knee arthroplasty. J Arthroplasty 30:2121–2124CrossRefPubMedGoogle Scholar
  27. 27.
    Okamoto S, Mizu-uchi H, Okazaki K, Hamai S, Tashiro Y, Nakahara H, Iwamoto Y (2016) Two-dimensional planning can result in internal rotation of the femoral component in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 24:229–235CrossRefPubMedGoogle Scholar
  28. 28.
    Panni AS, Ascione F, Rossini M, Braile A, Corona K, Vasso M, Hirschmann MT (2017) Tibial internal rotation negatively affects clinical outcomes in total knee arthroplasty: a systematic review. Knee Surg Sports Traumatol Arthrosc 436:172–179Google Scholar
  29. 29.
    Sun T, Lu H, Hong N, Wu J, Feng C (2009) Bony landmarks and rotational alignment in total knee arthroplasty for Chinese osteoarthritic knees with varus or valgus deformities. J Arthroplasty 24:427–431CrossRefPubMedGoogle Scholar
  30. 30.
    Tao K, Cai M, Li S-H (2010) The anteroposterior axis of the tibia in total knee arthroplasty for chinese knees. Orthopedics 33:799PubMedGoogle Scholar
  31. 31.
    Uehara K, Kadoya Y, Kobayashi A, Ohashi H, Yamano Y (2002) Bone anatomy and rotational alignment in total knee arthroplasty. Clin Orthop Relat Res 402:196–201CrossRefGoogle Scholar
  32. 32.
    Ushio T, Mizu-uchi H, Okazaki K, Ma Y, Kuwashima U, Iwamoto Y (2017) The anteroposterior axis of the proximal tibia can change after tibial resection in total knee arthroplasty: computer simulation using asian osteoarthritis knees. J Arthroplasty 32:1006–1012CrossRefPubMedGoogle Scholar
  33. 33.
    Valkering KP, Breugem SJ, van den Bekerom MP, Tuinebreijer WE, van Geenen RCI (2015) Effect of rotational alignment on outcome of total knee arthroplasty. Acta Orthop 86:432–439CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Van Damme G, Defoort K, Ducoulombier Y, Van Glabbeek F, Bellemans J, Victor J (2005) What should the surgeon aim for when performing computer-assisted total knee arthroplasty? J Bone Joint Surg Am 87(Suppl 2):52–58PubMedGoogle Scholar
  35. 35.
    van Gennip S, Schimmel JJP, van Hellemondt GG, Defoort KC, Wymenga AB (2012) Medial patellofemoral ligament reconstruction for patellar maltracking following total knee arthroplasty is effective. Knee Surg Sports Traumatol Arthrosc 22:2569–2573CrossRefPubMedGoogle Scholar
  36. 36.
    Walter SD, Eliasziw M, Donner A (1998) Sample size and optimal designs for reliability studies. Stat Med 17:101–110CrossRefPubMedGoogle Scholar
  37. 37.
    Watanabe S, Sato T, Omori G, Koga Y, Endo N (2014) Change in tibiofemoral rotational alignment during total knee arthroplasty. J Orthop Sci 19:571–578CrossRefPubMedGoogle Scholar
  38. 38.
    Wernecke GC, Harrris IA, Seeto BG, Chen DB, MacDessi SJ (2016) Normal femorotibial rotational alignment and implications for total knee arthroplasty: an MRI analysis. HSS J 12:216–222CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Yu HC, Wen H, Zhang Y, Hu YZ, Wu JB, Kong JZ (2015) Research on the reliability of the Akagi line as a reference axis to guide for rotational alignment of the proximal tibial component in total knee arthroplasty. Zhongguo Gu Shang 28:884–887PubMedGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2018

Authors and Affiliations

  • Yuan Ma
    • 1
  • Hideki Mizu-uchi
    • 1
  • Tetsuro Ushio
    • 1
  • Satoshi Hamai
    • 1
  • Yukio Akasaki
    • 1
  • Koji Murakami
    • 1
  • Yasuharu Nakashima
    • 1
  1. 1.Department of Orthopaedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan

Personalised recommendations