Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 26, Issue 12, pp 3717–3723 | Cite as

Steeper posterior tibial slope correlates with greater tibial tunnel widening after anterior cruciate ligament reconstruction

  • Kanto Nagai
  • Yasutaka Tashiro
  • Elmar Herbst
  • Tom Gale
  • Joon Ho Wang
  • James J. Irrgang
  • William Anderst
  • Freddie H. FuEmail author
Knee

Abstract

Purpose

To investigate the correlation between posterior tibial slope (PTS) and tibial tunnel widening after anterior cruciate ligament reconstruction (ACL-R).

Methods

Twenty-five patients underwent anatomic single-bundle ACL-R using quadriceps tendon autograft. Six months after surgery, each patient underwent high-resolution computed tomography (CT). Tibial tunnel aperture location was evaluated using a grid method. Medial and lateral PTS (°) was measured based on a previously described method. To evaluate tibial tunnel widening, cross-sectional area (CSA) of the tibial tunnel beneath the aperture was measured using CT axial slice. Nominal elliptical area was calculated using the diameter of a dilator during the surgery and the angle between the axial slice and the tunnel axis. Percentage of tunnel widening (%) was determined by dividing the CSA by the nominal area. Pearson correlation coefficient was used to explore the association between medial/lateral PTS and tibial tunnel widening (P < 0.05).

Results

Location of tibial tunnel aperture was 29.8 ± 6.3% in anterior–posterior direction, and 45.7 ± 2.1% in medial–lateral direction. Medial and lateral PTS were 3.7° ± 2.5° and 4.9° ± 2.4° respectively. Tibial tunnel widening was 97.2 ± 20.3%. Tibial tunnel widening was correlated with medial PTS (r = 0.558, P = 0.004) and lateral PTS (r = 0.431, P = 0.031).

Conclusion

Steeper medial and lateral PTS correlated with greater tibial tunnel widening. The clinical relevance is that surgeons should be aware that PTS may affect tibial tunnel widening after ACL-R. Thus, subjects with steeper PTS may need to be more carefully followed to see if there is greater tibial tunnel widening, which might be important especially in revision ACL-R.

Level of evidence

III.

Keywords

ACL Anterior cruciate ligament reconstruction Tunnel widening Cross-sectional area Posterior tibial slope Computed tomography Bony morphology Quadriceps tendon graft Tibial tunnel location 

Abbreviations

ACL-R

Anterior cruciate ligament reconstruction

PTS

Posterior tibial slope

MRI

Magnetic resonance imaging

ML

Medial–lateral

AP

Anterior–posterior

CT

Computed tomography

TF

Tibiofemoral

ICC

Intraclass correlation coefficient

CSA

Cross-sectional area

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest in association with the present study.

Funding

This research was funded by NIH/NIAMS, Grant No. R01 AR 056630.

Ethical approval

The institutional review board (IRB) for human subject research in University of Pittsburgh approved all aspects of this study (ID: PRO09020493).

Informed consent

Informed consent was obtained from all patients before the enrollment.

References

  1. 1.
    Aga C, Wilson KJ, Johansen S, Dornan G, La Prade RF, Engebretsen L (2017) Tunnel widening in single- versus double-bundle anterior cruciate ligament reconstructed knees. Knee Surg Sports Traumatol Arthrosc 25(4):1316–1327CrossRefGoogle Scholar
  2. 2.
    Beynnon BD, Hall JS, Sturnick DR, Desarno MJ, Gardner-Morse M, Tourville TW, Smith HC, Slauterbeck JR, Shultz SJ, Johnson RJ, Vacek PM (2014) Increased slope of the lateral tibial plateau subchondral bone is associated with greater risk of noncontact ACL injury in females but not in males: a prospective cohort study with a nested, matched case–control analysis. Am J Sports Med 42(5):1039–1048CrossRefGoogle Scholar
  3. 3.
    Choi NH, Oh JS, Jung SH, Victoroff BN (2013) Correlation between endobutton loop length and tunnel widening after hamstring anterior cruciate ligament reconstruction. Am J Sports Med 41(1):101–106CrossRefGoogle Scholar
  4. 4.
    Christensen JJ, Krych AJ, Engasser WM, Vanhees MK, Collins MS, Dahm DL (2015) Lateral tibial posterior slope is increased in patients with early graft failure after anterior cruciate ligament reconstruction. Am J Sports Med 43(10):2510–2514CrossRefGoogle Scholar
  5. 5.
    Clatworthy MG, Annear P, Bulow JU, Bartlett RJ (1999) Tunnel widening in anterior cruciate ligament reconstruction: a prospective evaluation of hamstring and patella tendon grafts. Knee Surg Sports Traumatol Arthrosc 7(3):138–145CrossRefGoogle Scholar
  6. 6.
    Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg Br 76(5):745–749CrossRefGoogle Scholar
  7. 7.
    Fink C, Zapp M, Benedetto KP, Hackl W, Hoser C, Rieger M (2001) Tibial tunnel enlargement following anterior cruciate ligament reconstruction with patellar tendon autograft. Arthroscopy 17(2):138–143CrossRefGoogle Scholar
  8. 8.
    Giffin JR, Vogrin TM, Zantop T, Woo SL, Harner CD (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 32(2):376–382CrossRefGoogle Scholar
  9. 9.
    Hashemi J, Chandrashekar N, Mansouri H, Gill B, Slauterbeck JR, Schutt RC Jr, Dabezies E, Beynnon BD (2010) Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med 38(1):54–62CrossRefGoogle Scholar
  10. 10.
    Hofbauer M, Muller B, Murawski CD, van Eck CF, Fu FH (2014) The concept of individualized anatomic anterior cruciate ligament (ACL) reconstruction. Knee Surg Sports Traumatol Arthrosc 22(5):979–986PubMedGoogle Scholar
  11. 11.
    Hoher J, Moller HD, Fu FH (1998) Bone tunnel enlargement after anterior cruciate ligament reconstruction: fact or fiction? Knee Surg Sports Traumatol Arthrosc 6(4):231–240CrossRefGoogle Scholar
  12. 12.
    Hudek R, Schmutz S, Regenfelder F, Fuchs B, Koch PP (2009) Novel measurement technique of the tibial slope on conventional MRI. Clin Orthop Relat Res 467(8):2066–2072CrossRefGoogle Scholar
  13. 13.
    Irrgang JJ, Enseki KR (2008) Rehabilitation following ACL reconstruction. In: Fu FH, Cohen S (eds) Current concepts in ACL reconstruction. SLACK Incorporated, Thorofare, pp 377–390Google Scholar
  14. 14.
    Irrgang JJ, Tashman S, Moore C, Fu FH (2012) Challenge accepted: description of an ongoing NIH-funded randomized clinical trial to compare anatomic single-bundle versus anatomic double-bundle ACL reconstruction. Arthroscopy 28(6):745–747 (author reply 747–748) CrossRefGoogle Scholar
  15. 15.
    Kawaguchi Y, Kondo E, Kitamura N, Kai S, Inoue M, Yasuda K (2011) Comparisons of femoral tunnel enlargement in 169 patients between single-bundle and anatomic double-bundle anterior cruciate ligament reconstructions with hamstring tendon grafts. Knee Surg Sports Traumatol Arthrosc 19(8):1249–1257CrossRefGoogle Scholar
  16. 16.
    Kopf S, Forsythe B, Wong AK, Tashman S, Anderst W, Irrgang JJ, Fu FH (2010) Nonanatomic tunnel position in traditional transtibial single-bundle anterior cruciate ligament reconstruction evaluated by three-dimensional computed tomography. J Bone Joint Surg Am 92(6):1427–1431CrossRefGoogle Scholar
  17. 17.
    L’Insalata JC, Klatt B, Fu FH, Harner CD (1997) Tunnel expansion following anterior cruciate ligament reconstruction: a comparison of hamstring and patellar tendon autografts. Knee Surg Sports Traumatol Arthrosc 5(4):234–238CrossRefGoogle Scholar
  18. 18.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174CrossRefGoogle Scholar
  19. 19.
    Lee JJ, Choi YJ, Shin KY, Choi CH (2011) Medial meniscal tears in anterior cruciate ligament-deficient knees: effects of posterior tibial slope on medial meniscal tear. Knee Surg Relat Res 23(4):227–230CrossRefGoogle Scholar
  20. 20.
    Li Y, Hong L, Feng H, Wang Q, Zhang J, Song G, Chen X, Zhuo H (2014) Posterior tibial slope influences static anterior tibial translation in anterior cruciate ligament reconstruction: a minimum 2-year follow-up study. Am J Sports Med 42(4):927–933CrossRefGoogle Scholar
  21. 21.
    Liu W, Maitland ME (2003) Influence of anthropometric and mechanical variations on functional instability in the ACL-deficient knee. Ann Biomed Eng 31(10):1153–1161CrossRefGoogle Scholar
  22. 22.
    Marchant MH Jr, Willimon SC, Vinson E, Pietrobon R, Garrett WE, Higgins LD (2010) Comparison of plain radiography, computed tomography, and magnetic resonance imaging in the evaluation of bone tunnel widening after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 18(8):1059–1064CrossRefGoogle Scholar
  23. 23.
    Markl I, Zantop T, Zeman F, Seitz J, Angele P (2015) The effect of tibial slope in acute ACL-insufficient patients on concurrent meniscal tears. Arch Orthop Trauma Surg 135(8):1141–1149CrossRefGoogle Scholar
  24. 24.
    Marouane H, Shirazi-Adl A, Adouni M, Hashemi J (2014) Steeper posterior tibial slope markedly increases ACL force in both active gait and passive knee joint under compression. J Biomech 47(6):1353–1359CrossRefGoogle Scholar
  25. 25.
    Mermerkaya MU, Atay OA, Kaymaz B, Bekmez S, Karaaslan F, Doral MN (2015) Anterior cruciate ligament reconstruction using a hamstring graft: a retrospective comparison of tunnel widening upon use of two different femoral fixation methods. Knee Surg Sports Traumatol Arthrosc 23(8):2283–2291CrossRefGoogle Scholar
  26. 26.
    Otsuka H, Ishibashi Y, Tsuda E, Sasaki K, Toh S (2003) Comparison of three techniques of anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft. Differences in anterior tibial translation and tunnel enlargement with each technique. Am J Sports Med 31(2):282–288CrossRefGoogle Scholar
  27. 27.
    Rahnemai-Azar AA, Abebe ES, Johnson P, Labrum J, Fu FH, Irrgang JJ, Samuelsson K, Musahl V (2017) Increased lateral tibial slope predicts high-grade rotatory knee laxity pre-operatively in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 25(4):1170–1176CrossRefGoogle Scholar
  28. 28.
    Rodeo SA, Kawamura S, Kim HJ, Dynybil C, Ying L (2006) Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: an effect of graft-tunnel motion? Am J Sports Med 34(11):1790–1800CrossRefGoogle Scholar
  29. 29.
    Sabat D, Kundu K, Arora S, Kumar V (2011) Tunnel widening after anterior cruciate ligament reconstruction: a prospective randomized computed tomography-based study comparing 2 different femoral fixation methods for hamstring graft. Arthroscopy 27(6):776–783CrossRefGoogle Scholar
  30. 30.
    Sabzevari S, Rahnemai-Azar AA, Shaikh HS, Arner JW, Irrgang JJ, Fu FH (2017) Increased lateral tibial posterior slope is related to tibial tunnel widening after primary ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 25(12):3906–3913CrossRefGoogle Scholar
  31. 31.
    Salmon LJ, Heath E, Akrawi H, Roe JP, Linklater J, Pinczewski LA (2018) 20-Year outcomes of anterior cruciate ligament reconstruction with hamstring tendon autograft: the catastrophic effect of age and posterior tibial slope. Am J Sports Med 46(3):531–543CrossRefGoogle Scholar
  32. 32.
    Shelburne KB, Kim HJ, Sterett WI, Pandy MG (2011) Effect of posterior tibial slope on knee biomechanics during functional activity. J Orthop Res 29(2):223–231CrossRefGoogle Scholar
  33. 33.
    Sturnick DR, Vacek PM, DeSarno MJ, Gardner-Morse MG, Tourville TW, Slauterbeck JR, Johnson RJ, Shultz SJ, Beynnon BD (2015) Combined anatomic factors predicting risk of anterior cruciate ligament injury for males and females. Am J Sports Med 43(4):839–847CrossRefGoogle Scholar
  34. 34.
    Tashiro Y, Sundaram V, Thorhauer E, Gale T, Anderst W, Irrgang JJ, Fu FH, Tashman S (2017) In vivo analysis of dynamic graft bending angle in anterior cruciate ligament-reconstructed knees during downward running and level walking: comparison of flexible and rigid drills for transportal technique. Arthroscopy 33(7):1393–1402CrossRefGoogle Scholar
  35. 35.
    Voos JE, Suero EM, Citak M, Petrigliano FP, Bosscher MR, Citak M, Wickiewicz TL, Pearle AD (2012) Effect of tibial slope on the stability of the anterior cruciate ligament-deficient knee. Knee Surg Sports Traumatol Arthrosc 20(8):1626–1631CrossRefGoogle Scholar
  36. 36.
    Webb JM, Salmon LJ, Leclerc E, Pinczewski LA, Roe JP (2013) Posterior tibial slope and further anterior cruciate ligament injuries in the anterior cruciate ligament-reconstructed patient. Am J Sports Med 41(12):2800–2804CrossRefGoogle Scholar
  37. 37.
    Weber AE, Delos D, Oltean HN, Vadasdi K, Cavanaugh J, Potter HG, Rodeo SA (2015) Tibial and femoral tunnel changes after ACL reconstruction: a prospective 2-year longitudinal MRI study. Am J Sports Med 43(5):1147–1156CrossRefGoogle Scholar
  38. 38.
    Wolf BR, Ramme AJ, Wright RW, Brophy RH, McCarty EC, Vidal AR, Parker RD, Andrish JT, Amendola A, Group MK (2013) Variability in ACL tunnel placement: observational clinical study of surgeon ACL tunnel variability. Am J Sports Med 41(6):1265–1273CrossRefGoogle Scholar
  39. 39.
    Yanagisawa S, Kimura M, Hagiwara K, Ogoshi A, Nakagawa T, Shiozawa H, Ohsawa T (2018) Patient age as a preoperative factor associated with tunnel enlargement following double-bundle anterior cruciate ligament reconstruction using hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc 26(4):1230–1236PubMedGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2018

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghUSA
  2. 2.Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
  3. 3.Department of Orthopaedic Sports Medicine, Klinikum rechts der IsarTechnical University MunichMunichGermany

Personalised recommendations