Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 26, Issue 12, pp 3532–3536 | Cite as

The potential European genetic predisposition for non-contact anterior cruciate ligament injury

  • Diego Costa AsturEmail author
  • Edilson Andrade
  • Gustavo Gonçalves Arliani
  • Pedro Debieux
  • Leonor Casilla Loyola
  • Sidney Emanuel Batista dos Santos
  • Rommel Mario Rodriguez Burbano
  • Mariana Ferreira Leal
  • Moises Cohen



Previous research has provided evidence of a hereditary predisposition for anterior cruciate ligament (ACL) injury. The purpose of this study was to evaluate the association between ancestral population genetics and risk of non-contact ACL injuries.


Blood samples were collected from 177 individuals with a history of non-contact ACL injury and 556 non-injured control individuals for analysis of the genetic material through the use of a panel of 48 INDELs ancestry genetic markers from three ancestral origins.


Among patients with non-contact ACL injury, 82% were male and 18% were female. In the control group, 78% were male, and 22% were female. The mean age of the non-contact ACL injury group was 31.7 years (± 10.2), and the control group was 33.8 years (± 13.2). The individual genetic contribution from INDELs of each ancestral origin varied considerably: ranging between 1.5–94.8% contribution for INDELs of African origin (mean of 21.4% of INDELs); between 2 and 96.1% contribution for INDELs of European origin (mean of 66.7% of INDELs); and between 1.3–96.4% contribution for INDELs of Amerindian origin (mean of 11.7% of INDELs). When comparing paired subjects from the non-contact ACL and control groups, the genetic analysis showed that the European ancestry score was higher in the non-contact ACL group than control group (0.70 ± 0.21 vs 0.63 ± 0.22 respectively, p < 0.001), whereas African ancestry scores (ACL group 0.18 ± 0.18 vs control group 0.24 ± 0.21, p < 0.001) and Amerindian ancestry scores (ACL group 0.11 ± 0.09 vs control group 0.12 ± 0.10, n.s.) were lower among the non-contact ACL group than in controls.


European INDELs markers were found to represent a potential genetic predisposition for non-contact ACL injuries when compared to African and Amerindian INDELs. This study has the potential to correlate a measurable and distinct genetic marker with risk of a non-contact ACL injury. Thus, it increases knowledge base and volume of molecular and genetical factors associated with this pathology. Furthermore, this study provides guidance and evidence for the development of genetic risk-screening panels for non-contact ACL injury.

Level of evidence

Level III Diagnostic Study.



Funding external source of funding was used. This project received funding from Fundação de Amparo à Pesquisa do Estado de São Paulo.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The experimental study was approved by the institutional research ethics committee, protocol 51436.


  1. 1.
    Astur DC, Novaretti JV, Cohen M (2017) Genetic and molecular factors and anterior cruciate ligament injuries: current concepts. J Isakos 2(3):123–126CrossRefGoogle Scholar
  2. 2.
    Benedet AL, Moraes CF, Camargos EF, Oliveira LF, Souza VC, Lins TC et al (2012) Amerindian genetic ancestry protects against Alzheimer’s disease. Dement Geriatr Cogn Disord 33(5):311–317CrossRefGoogle Scholar
  3. 3.
    Brum DG, Luizon MR, Santos AC, Lana-Peixoto MA, Rocha CF, Brito ML et al (2013) European ancestry predominates in neuromyelitis optica and multiple sclerosis patients from Brazil. Plos One 8(3):e58925CrossRefGoogle Scholar
  4. 4.
    Cardena MM, Ribeiro-Dos-Santos A, Santos S, Mansur AJ, Pereira AC, Fridman C (2014) Amerindian genetic ancestry is associated with higher survival rates compared to African and European ancestry in Brazilian patients with heart failure. Int J Cardiol 176(2):527–528CrossRefGoogle Scholar
  5. 5.
    D’Elia MP, Brandão MC, de Andrade Ramos BR, da Silva MG, Miot LD, Dos Santos SE, Miot HA (2017) African ancestry is associated with facial melasma in women: a cross-sectional study. BMC Med Genet 17(1):17–18CrossRefGoogle Scholar
  6. 6.
    Fernandes MR, de Carvalho DC, dos Santos ÂK, dos Santos SE, de Assumpção PP, Burbano RM, dos Santos NP (2013) Association of slow acetylation profile of NAT2 with breast and gastric cancer risk in Brazil. Anticancer Res 33(9):3683–3689PubMedGoogle Scholar
  7. 7.
    Fernandez JR, Shiver MD (2004) Using genetic admixture to study the biology of obesity traits and to map genes in admixed populations. Nutr Rev 62(7 Pt 2):S69–S74CrossRefGoogle Scholar
  8. 8.
    Franceschini N, Chasman DI, Cooper-Dehoff RM, Arnett DK (2014) Genetics, ancestry, and hypertension: implications for targeted antihypertensive therapies. Curr Hypertens Rep 16(8):461CrossRefGoogle Scholar
  9. 9.
    Garcia P, Alencar D, Pinto P, Santos N, Salgado C, Sortica VA et al (2013) Haplotypes of the IL10 gene as potential protection factors in leprosy patients. Clin Vaccine Immunol 20(10):1599–1603CrossRefGoogle Scholar
  10. 10.
    Giolo SR, Soler JM, Greenway SC, Almeida MA, de Andrade M, Seidman J et al (2011) Brazilian urban population genetic structure reveals a high degree of admixture. Eur J Hum Genet 20(1):111–116CrossRefGoogle Scholar
  11. 11.
    Guindalini C, Colugnati FA, Pellegrino R, Santos-Silva R, Bittencourt LR, Tufik S (2010) Influence of genetic ancestry on the risk of obstructive sleep apnoea syndrome. Eur Respir J 36(4):834–841CrossRefGoogle Scholar
  12. 12.
    Kaynak M, Nijman F, van Meurs J, Reijman M, Meuffels DE (2017) Genetic variants and anterior cruciate ligament rupture: a systematic review. Sports Med 47(8):1637–1650CrossRefGoogle Scholar
  13. 13.
    Leal MF, Astur DC, Debieux P, Arliani GG, Silveira Franciozi CE, Loyola LC, Andreoli CV, Smith MC, Pochini Ade C, Ejnisman B, Cohen M (2015) Identification of suitable reference genes for investigating gene expression in anterior cruciate ligament injury by using reverse transcription-quantitative PCR. PLoS One 10(7):e0133323CrossRefGoogle Scholar
  14. 14.
    Posthumus M, September AV, Keegan M, O’Cuinneagain D, Van der Merwe W, Schwellnus MP, Collins M (2009) Genetic risk factors for anterior cruciate ligament ruptures: COL1A1 gene variant. Br J Sports Med 43(5):352–356CrossRefGoogle Scholar
  15. 15.
    Posthumus M, September AV, O’Cuinneagain D, van der Merwe W, Schwellnus MP, Collins M (2010) The association between the COL12A1 gene and anterior cruciate ligament ruptures. Br J Sports Med 44(16):1160–1165CrossRefGoogle Scholar
  16. 16.
    Ramos BR, D’Elia MP, Amador MA, Santos NP, Santos SE, da Cruz CE et al (2016) Neither self-reported ethnicity nor declared family origin are reliable indicators of genomic ancestry. Genetica 144(3):259–265CrossRefGoogle Scholar
  17. 17.
    Ramos BR, Mendes ND, Tanikawa AA, Amador MA, dos Santos NP, dos Santos SE, Castelli EC, Witkin SS, da Silva MG (2016) Ancestry informative markers and selected single nucleotide polymorphisms in immunoregulatory genes on preterm labor and preterm premature rupture of membranes: a case control study. BMC Pregnancy Childbirth 5:16:30CrossRefGoogle Scholar
  18. 18.
    Sambrook J, Russell DW (2006) Recovery of DNA from Low-melting-temperature agarose gels: organic extraction. CSH Protoc (1). pii:pdb.prot4025. CrossRefGoogle Scholar
  19. 19.
    Sanchez E, Webb RD, Rasmussen A, Kelly JA, Riba L, Kaufman KM et al (2010) Genetically determined Amerindian ancestry correlates with increased frequency of risk alleles for systemic lupus erythematosus. Arthritis Rheum 62(12):3722–3729CrossRefGoogle Scholar
  20. 20.
    Santos NP, Ribeiro-Rodrigues EM, Ribeiro-Dos-Santos AK, Pereira R, Gusmão L, Amorim A, Guerreiro JF, Zago MA, Matte C, Hutz MH, Santos SE (2010) Assessing individual interethnic admixture and population substructure using a 48-insertion–deletion (INDEL) ancestry-informative marker (AIM) panel. Hum Mutat 31(2):184–190CrossRefGoogle Scholar
  21. 21.
    Seldin MF, Qi L, Scherbarth HR, Tian C, Ransom M, Silva G et al (2008) Amerindian ancestry in Argentina is associated with increased risk for systemic Lúpus erythematosus. Genes Immun 9(4):389–393CrossRefGoogle Scholar
  22. 22.
    Shim JK, Ackerman SL, Darling KW, Hiatt RA, Lee SS (2014) Race and ancestry in the age of inclusion: technique and meaning in post-genomic science. J Health Soc Behav 55(4):504–518CrossRefGoogle Scholar
  23. 23.
    Shriver MD, Smith MW, Jin L, Marcini A, Akey JM, Deka R et al (1997) Ethnic-affiliation estimation by use of population-specific DNA markers. Am J Hum Genet 60(4):957–964PubMedPubMedCentralGoogle Scholar
  24. 24.
    Sortica Vde A, Ojopi EB, Genro JP, Callegari-Jacques S, Ribeiro-Dos-Santos A, de Moraes MO et al (2012) Influence of genomic ancestry on the distribution of SLCO1B1, SLCO1B3 and ABCB1 gene polymorphisms among Brazilians. Basic Clin Pharmacol Toxicol 110(5):460–468CrossRefGoogle Scholar
  25. 25.
    Suarez-Kurtz G, Pena SD (2006) Pharmacogenomics in the Americas: the impact of genetic admixture. Curr Drug Targets 7(12):1649–1658CrossRefGoogle Scholar
  26. 26.
    Vergara C, Caraballo L, Mercado D, Jimenez S, Rojas W, Rafaels N et al (2009) African ancestry is associated with risk of asthma and high total serum IgE in a population from the Caribbean Coast of Colombia. Hum Genet 125(5–6):565–579CrossRefGoogle Scholar
  27. 27.
    Wang C, Li H, Chen K, Wu B, Liu H (2017) Association of polymorphisms rs1800012 in COL1A1 with sports-related tendon and ligament injuries: a meta-analysis. Oncotarget 18(16):27627–27634Google Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2018

Authors and Affiliations

  • Diego Costa Astur
    • 1
    Email author
  • Edilson Andrade
    • 1
  • Gustavo Gonçalves Arliani
    • 1
  • Pedro Debieux
    • 1
  • Leonor Casilla Loyola
    • 1
  • Sidney Emanuel Batista dos Santos
    • 3
  • Rommel Mario Rodriguez Burbano
    • 4
  • Mariana Ferreira Leal
    • 2
  • Moises Cohen
    • 1
  1. 1.Centro de Traumatologia do EsporteOrthopaedic Surgeon from Universidade Federal de São PauloSão PauloBrazil
  2. 2.Department of Genetics and Othopaedics and TraumatologyUniversidade Federal de São PauloSão PauloBrazil
  3. 3.Laboratório de Genética Humana e Médica, Deparatamento de PatologiaUniversidade Federal do ParáBelémBrazil
  4. 4.Laboratório de Citogenética HumanaUniversidade Federal do ParáBelémBrazil

Personalised recommendations