Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 26, Issue 12, pp 3699–3705 | Cite as

Atopic dermatitis is a novel demographic risk factor for surgical site infection after anterior cruciate ligament reconstruction

  • Manabu Kawata
  • Yusuke Sasabuchi
  • Shuji TaketomiEmail author
  • Hiroshi Inui
  • Hiroki Matsui
  • Kiyohide Fushimi
  • Hideo Yasunaga
  • Sakae Tanaka



Although various risk factors for surgical site infection after anterior cruciate ligament reconstruction (ACLR) have been reported, the number of studies with large sample sizes on this topic is limited. The aim of the present study was to clarify the risk factors for early surgical site infection after ACLR in a large cohort using a national database in Japan.


The data of patients who underwent ACLR from 2010 to 2015 were obtained from the Diagnosis Procedure Combination database, which covers approximately half of all hospital admissions in Japan. The outcome measures were the prevalences of surgical site infection and deep surgical site infection after ACLR during hospitalization. The association between the occurrence of surgical site infection and patients’ demographic data, including sex, age, body mass index (BMI), smoking status, preoperative steroid use, and comorbidities such as diabetes, hepatic dysfunction, renal dysfunction, and atopic dermatitis, were examined using a multivariable logistic regression model.


Among 30,536 patients who underwent ACLR, 288 patients with surgical site infection (0.94%) and 86 with deep surgical site infection (0.28%) were identified. The univariate analysis showed that higher prevalences of surgical site infection and deep surgical site infection were associated with male sex, a higher BMI, atopic dermatitis, and preoperative steroid use. Patients with diabetes or hepatic dysfunction had a significantly higher prevalence of surgical site infection. The multivariable analysis showed that surgical site infection was significantly associated with male sex vs. female sex; odds ratio (OR), 2.90; 95% confidence interval (CI), 2.17–3.89, age of ≤ 19 vs. 20–29 years; OR, 1.56; 95% CI 1.13–2.15, BMI of ≥ 30.0 vs. 18.5–22.9 kg/m2; OR, 1.72; 95% CI 1.16–2.54, diabetes (OR, 2.70; 95% CI 1.28–5.71), atopic dermatitis (OR, 7.19; 95% CI 2.94–17.57), and preoperative steroid use (OR, 6.18; 95% CI 2.32–16.52).


Atopic dermatitis, preoperative steroid use, young age (≤ 19 years), obesity (BMI of ≥ 30.0 kg/m2), male sex, and diabetes were independent demographic risk factors for surgical site infection after ACLR. The present study will be useful when surgeons evaluate the risk of SSI after ACLR in terms of demographic aspects.

Level of evidence



Anterior cruciate ligament reconstruction Surgical site infection Atopic dermatitis 


Author contributions

KF and HY collected the data. MK, YS, ShT, HI, HY and SaT designed the study. MK, YS, ShT, HI, HM, and HY analysed and interpreted the data. MK, YS, ShT, HI, and HY drafted the manuscript. All authors had complete access to all data (including statistical reports and tables) used in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. All authors read and approved the final manuscript.


This work was supported by Grants from the Ministry of Health, Labour and Welfare, Japan (H29-Policy-Designated-009 and H29-ICT-General-004); Ministry of Education, Culture, Sports, Science and Technology, Japan (17H04141); and the Japan Agency for Medical Research and Development (AMED). The sponsors had no role in the study design, data collection, data analysis, data interpretation, or writing of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval and Informed consent

The Ethics Committee of the University of Tokyo approved the study design and waived the requirement for informed consent because all data are anonymous (approval number: 3501).


  1. 1.
    Armstrong RW, Bolding F (1994) Septic arthritis after arthroscopy: the contributing roles of intraarticular steroids and environmental factors. Am J Infect Control 22(1):16–18CrossRefGoogle Scholar
  2. 2.
    Babcock HM, Carroll C, Matava M, L’ecuyer P, Fraser V (2003) Surgical site infections after arthroscopy: outbreak investigation and case control study. Arthroscopy 19(2):172–181CrossRefGoogle Scholar
  3. 3.
    Barker JU, Drakos MC, Maak TG, Warren RF, Williams RJ 3rd, Allen AA (2010) Effect of graft selection on the incidence of postoperative infection in anterior cruciate ligament reconstruction. Am J Sports Med 38(2):281–286CrossRefGoogle Scholar
  4. 4.
    Benenson S, Zimhony O, Dahan D, Solomon M, Raveh D, Schlesinger Y, Yinnon AM (2005) Atopic dermatitis—a risk factor for invasive Staphylococcus aureus infections: two cases and review. Am J Med 118(9):1048–1051CrossRefGoogle Scholar
  5. 5.
    Bergler-Czop B, Brzezińska-Wcisło L (2013) Dermatological problems of the puberty. Postepy Dermatol Alergol 30(3):178–187CrossRefGoogle Scholar
  6. 6.
    Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE (2005) Treatment of anterior cruciate ligament injuries, part 1. Am J Sports Med 33(10):1579–1602CrossRefGoogle Scholar
  7. 7.
    Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE (2005) Treatment of anterior cruciate ligament injuries, part 2. Am J Sports Med 33(11):1751–1767CrossRefGoogle Scholar
  8. 8.
    Bieber T (2010) Atopic dermatitis. Ann Dermatol 22(2):125–137CrossRefGoogle Scholar
  9. 9.
    Blood AG, Sandoval MF, Burger E, Halverson-Carpenter K (2017) Risk and protective factors associated with surgical infections among spine patients. Surg Infect (Larchmt) 18(3):234–249CrossRefGoogle Scholar
  10. 10.
    Brophy RH, Wright RW, Huston LJ, Nwosu SK; MOON Knee Group, Spindler KP (2015) Factors associated with infection following anterior cruciate ligament reconstruction. J Bone Jt Surg Am 97(6):450–454CrossRefGoogle Scholar
  11. 11.
    Buller LT, Best MJ, Baraga MG, Kaplan LD (2014) Trends in anterior cruciate ligament reconstruction in the United States. Orthop J Sports Med 3(1):2325967114563664PubMedPubMedCentralGoogle Scholar
  12. 12.
    Burks RT, Friederichs MG, Fink B, Luker MG, West HS, Greis PE (2003) Treatment of postoperative anterior cruciate ligament infections with graft removal and early reimplantation. Am J Sports Med 31(3):414–418CrossRefGoogle Scholar
  13. 13.
    Cancienne JM, Gwathmey FW, Miller MD, Werner BC (2016) Tobacco use is associated with increased complications after anterior cruciate ligament reconstruction. Am J Sports Med 44(1):99–104CrossRefGoogle Scholar
  14. 14.
    Chen J, Cui Y, Li X, Miao X, Wen Z, Xue Y, Tian J (2013) Risk factors for deep infection after total knee arthroplasty: a meta-analysis. Arch Orthop Trauma Surg 133(5):675–687CrossRefGoogle Scholar
  15. 15.
    Chesney D, Sales J, Elton R, Brenkel IJ (2008) Infection after knee arthroplasty: a prospective study of 1509 cases. J Arthroplasty 23(3):355–359CrossRefGoogle Scholar
  16. 16.
    Chikuda H, Yasunaga H, Horiguchi H, Takeshita K, Sugita S, Taketomi S, Fushimi K, Tanaka S (2013) Impact of age and comorbidity burden on mortality and major complications in older adults undergoing orthopaedic surgery: an analysis using the Japanese diagnosis procedure combination database. BMC Musculoskelet Disord 14:173CrossRefGoogle Scholar
  17. 17.
    Chikuda H, Ohya J, Horiguchi H, Takeshita K, Fushimi K, Tanaka S, Yasunaga H (2014) Ischemic stroke after cervical spine injury: analysis of 11,005 patients using the Japanese diagnosis procedure combination database. Spine J 14(10):2275–2280CrossRefGoogle Scholar
  18. 18.
    Finkelstein R, Eluk O, Mashiach T, Levin D, Peskin B, Nirenberg G, Karkabi S, Soudri M (2017) Reducing surgical site infections following total hip and knee arthroplasty: an Israeli experience. Musculoskelet Surg 101(3):219–225CrossRefGoogle Scholar
  19. 19.
    Fukunaga N, Yuzaki M, Shomura Y, Fujiwara H, Nasu M, Okada Y (2012) Clinical outcomes of open heart surgery in patients with atopic dermatitis. Asian Cardiovasc Thorac Ann 20(2):137–140CrossRefGoogle Scholar
  20. 20.
    Granan LP, Forssblad M, Lind M, Engebretsen L (2009) The Scandinavian ACL registries 2004–2007: baseline epidemiology. Acta Orthop 80(5):563–567CrossRefGoogle Scholar
  21. 21.
    Indelli PF, Dillingham M, Fanton G, Schurman DJ (2002) Septic arthritis in postoperative anterior cruciate ligament reconstruction. Clin Orthop Relat Res 398:182–188CrossRefGoogle Scholar
  22. 22.
    Jämsen E, Varonen M, Huhtala H, Lehto MU, Lumio J, Konttinen YT, Moilanen T (2010) Incidence of prosthetic joint infections after primary knee arthroplasty. J Arthroplasty 25(1):87–92CrossRefGoogle Scholar
  23. 23.
    Jameson SS, Dowen D, James P, Serrano-Pedraza I, Reed MR, Deehan D (2012) Complications following anterior cruciate ligament reconstruction in the English NHS. Knee 19(1):14–19CrossRefGoogle Scholar
  24. 24.
    Johnsen MB, Guddal MH, Småstuen MC, Moksnes H, Engebretsen L, Storheim K, Zwart JA (2016) Sport participation and the risk of anterior cruciate ligament reconstruction in adolescents: a population-based prospective cohort study (The Young-HUNT Study). Am J Sports Med 44(11):2917–2924CrossRefGoogle Scholar
  25. 25.
    Judd D, Bottoni C, Kim D, Burke M, Hooker S (2006) Infections following arthroscopic anterior cruciate ligament reconstruction. Arthroscopy 22(4):375–384CrossRefGoogle Scholar
  26. 26.
    Kagawa M, Kerr D, Uchida H, Binns CW (2006) Differences in the relationship between BMI and percentage body fat between Japanese and Australian–Caucasian young men. Br J Nutr 95(5):1002–1007CrossRefGoogle Scholar
  27. 27.
    Katz LM, Battaglia TC, Patino P, Reichmann W, Hunter DJ, Richmond JC (2008) A retrospective comparison of the incidence of bacterial infection following anterior cruciate ligament reconstruction with autograft versus allograft. Arthroscopy 24(12):1330–1335CrossRefGoogle Scholar
  28. 28.
    Kurtz SM, Ong KL, Lau E, Bozic KJ, Berry D, Parvizi J (2010) Prosthetic joint infection risk after TKA in the medicare population. Clin Orthop Relat Res 468(1):52–56CrossRefGoogle Scholar
  29. 29.
    Lyman S, Koulouvaris P, Sherman S, Do H, Mandl LA, Marx RG (2009) Epidemiology of anterior cruciate ligament reconstruction: trends, readmissions, and subsequent knee surgery. J Bone Jt Surg Am 91(10):2321–2328CrossRefGoogle Scholar
  30. 30.
    Maintz L, Novak N (2011) Modifications of the innate immune system in atopic dermatitis. J Innate Immun 3(2):131–141CrossRefGoogle Scholar
  31. 31.
    Maletis GB, Inacio MC, Reynolds S, Desmond JL, Maletis MM, Funahashi TT (2013) Incidence of postoperative anterior cruciate ligament reconstruction infections: graft choice makes a difference. Am J Sports Med 41(8):1780–1785CrossRefGoogle Scholar
  32. 32.
    Murphy MV, Du DT, Hua W, Cortez KJ, Butler MG, Davis RL, DeCoster TA, Johnson L, Li L, Nakasato C, Nordin JD, Ramesh M, Schum M, Von Worley A, Zinderman C, Platt R, Klompas M (2016) Risk factors for surgical site infections following anterior cruciate ligament reconstruction. Infect Control Hosp Epidemiol 37(7):827–833CrossRefGoogle Scholar
  33. 33.
    OECD (2017) Length of hospital stay (indicator). Accessed 31 Jan 2018
  34. 34.
    Ogihara S, Yamazaki T, Maruyama T, Oka H, Miyoshi K, Azuma S, Yamada T, Murakami M, Kawamura N, Hara N, Terayama S, Morii J, Kato S, Tanaka S (2015) Prospective multicenter surveillance and risk factor analysis of deep surgical site infection after posterior thoracic and/or lumbar spinal surgery in adults. J Orthop Sci 20(1):71–77CrossRefGoogle Scholar
  35. 35.
    Ohya J, Chikuda H, Takeshi O, Kato S, Matsui H, Horiguchi H, Tanaka S, Yasunaga H (2017) Seasonal variations in the risk of reoperation for surgical site infection following elective spinal fusion surgery: a retrospective study using the Japanese diagnosis procedure combination database. Spine (Phila Pa 1976) 42(14):1068–1079CrossRefGoogle Scholar
  36. 36.
    Olsen LL, Møller AM, Brorson S, Hasselager RB, Sort R (2017) The impact of lifestyle risk factors on the rate of infection after surgery for a fracture of the ankle. Bone Jt J 99-B(2):225–230CrossRefGoogle Scholar
  37. 37.
    Olsen MA, Nepple JJ, Riew KD, Lenke LG, Bridwell KH, Mayfield J, Fraser VJ (2008) Risk factors for surgical site infection following orthopaedic spinal operations. J Bone Jt Surg Am 90(1):62–69CrossRefGoogle Scholar
  38. 38.
    Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL, Leung DY (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 347(15):1151–1160CrossRefGoogle Scholar
  39. 39.
    Prodromos CC, Han Y, Rogowski J, Joyce B, Shi K (2007) A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction regimen. Arthroscopy 23(12):1320–1325.e6CrossRefGoogle Scholar
  40. 40.
    Rennert-May E, Bush K, Vickers D, Smith S (2016) Use of a provincial surveillance system to characterize postoperative surgical site infections after primary hip and knee arthroplasty in Alberta, Canada. Am J Infect Control 44(11):1310–1314CrossRefGoogle Scholar
  41. 41.
    Saeki H, Furue M, Furukawa F, Hide M, Ohtsuki M, Katayama I, Sasaki R, Suto H, Takehara K (2009) Guidelines for management of atopic dermatitis. J Dermatol 36(10):563–577CrossRefGoogle Scholar
  42. 42.
    Sanders TL, Maradit Kremers H, Bryan AJ, Larson DR, Dahm DL, Levy B, Stuart MJ, Krych AJ (2016) Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study. Am J Sports Med 44(6):1502–1507CrossRefGoogle Scholar
  43. 43.
    Sonnery-Cottet B, Archbold P, Zayni R, Bortolletto J, Thaunat M, Prost T, Padua VB, Chambat P (2011) Prevalence of septic arthritis after anterior cruciate ligament reconstruction among professional athletes. Am J Sports Med 39(11):2371–2376CrossRefGoogle Scholar
  44. 44.
    Sugiura H, Umemoto N, Deguchi H, Murata Y, Tanaka K, Sawai T, Omoto M, Uchiyama M, Kiriyama T, Uehara M (1998) Prevalence of childhood and adolescent atopic dermatitis in a Japanese population: comparison with the disease frequency examined 20 years ago. Acta Derm Venereol 78(4):293–294CrossRefGoogle Scholar
  45. 45.
    Van Tongel A, Stuyck J, Bellemans J, Vandenneucker H (2007) Septic arthritis after arthroscopic anterior cruciate ligament reconstruction: a retrospective analysis of incidence, management and outcome. Am J Sports Med 35(7):1059–1063CrossRefGoogle Scholar
  46. 46.
    Williams RJ 3rd, Laurencin CT, Warren RF, Speciale AC, Brause BD, O’Brien S (1997) Septic arthritis after arthroscopic anterior cruciate ligament reconstruction: diagnosis and management. Am J Sports Med 25(2):261–267CrossRefGoogle Scholar
  47. 47.
    World Health Organization Regional Office for the Western Pacific (2000) The Asia–Pacific perspective: redefining obesity and its treatment. Accessed 31 Jan 2018
  48. 48.
    Wynants L, Bouwmeester W, Moons KG, Moerbeek M, Timmerman D, Van Huffel S, Van Calster B, Vergouwe Y (2015) A simulation study of sample size demonstrated the importance of the number of events per variable to develop prediction models in clustered data. J Clin Epidemiol 68(12):1406–1414CrossRefGoogle Scholar
  49. 49.
    Xing D, Ma JX, Ma XL, Song DH, Wang J, Chen Y, Yang Y, Zhu SW, Ma BY, Feng R (2013) A methodological, systematic review of evidence-based independent risk factors for surgical site infections after spinal surgery. Eur Spine J 22(3):605–615CrossRefGoogle Scholar
  50. 50.
    Zhu Y, Liu S, Zhang X, Chen W, Zhang Y (2017) Incidence and risks for surgical site infection after adult tibial plateau fractures treated by ORIF: a prospective multicentre study. Int Wound J 14(6):982–988CrossRefGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2018

Authors and Affiliations

  • Manabu Kawata
    • 1
  • Yusuke Sasabuchi
    • 2
  • Shuji Taketomi
    • 1
    Email author
  • Hiroshi Inui
    • 1
  • Hiroki Matsui
    • 3
  • Kiyohide Fushimi
    • 4
  • Hideo Yasunaga
    • 3
  • Sakae Tanaka
    • 1
  1. 1.Department of Orthopaedic Surgery, Faculty of MedicineThe University of TokyoTokyoJapan
  2. 2.Data Science CenterJichi Medical UniversityShimotsuke-shiJapan
  3. 3.Department of Clinical Epidemiology and Health Economics, School of Public HealthThe University of TokyoTokyoJapan
  4. 4.Department of Health Informatics and Policy, Graduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan

Personalised recommendations