The increase in posterior tibial slope provides a positive biomechanical effect in posterior-stabilized total knee arthroplasty

  • Kyoung-Tak Kang
  • Sae Kwang Kwon
  • Juhyun Son
  • Oh-Ryong Kwon
  • Jun-Sang Lee
  • Yong-Gon Koh
Knee
  • 50 Downloads

Abstract

Purpose

This study aims to clarify the influence of the posterior tibial slope (PTS) on knee joint biomechanics after posterior-stabilized (PS) total knee arthroplasty (TKA) using a computer simulation.

Methods

A validated TKA computational model was used to evaluate and quantify the effects of an increased PTS. In order to conduct a squat simulation, models with a − 3° to 15° PTS using increments of 3° were developed. Forces on the quadriceps and collateral ligament, a tibial posterior translation, contact point on a polyethylene (PE) insert, and contact stress on the patellofemoral (PF) joint and post in a PE insert were compared.

Results

The maximum force on the quadriceps and the PF contact stress decreased with increases in the PTS. The kinematics on the tibiofemoral (TF) joint translated in an increasingly posterior manner, and the medial and lateral contact points on a PE insert were located in posterior regions with increases in the PTS. Additionally, increases in the PTS decreased the force on the collateral ligament and increased the contact stress on the post in a PE insert. A higher force on the quadriceps is required when the PTS decreases with an equivalent flexion angle.

Conclusions

A surgeon should be prudent in terms of determining the PTS because an excessive increase in the PTS may lead to the progressive loosening of the TF joint due to a reduction in collateral ligament tension and failure of the post in a PE insert. Thus, we support a more individualized approach of optimal PTS determination given the findings of the study.

Keywords

Posterior tibial slope Total knee arthroplasty Kinematics 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Approval was not required, as neither human participants nor animals were involved in this study.

References

  1. 1.
    Baldwin JL (2009) The anatomy of the medial patellofemoral ligament. Am J Sports Med 37:2355–2361CrossRefPubMedGoogle Scholar
  2. 2.
    Banks SA, Harman MK, Hodge WA (2002) Mechanism of anterior impingement damage in total knee arthroplasty. J Bone Joint Surg Am 84-A(Suppl 2):37–42CrossRefGoogle Scholar
  3. 3.
    Barrack RL, Schrader T, Bertot AJ, Wolfe MW, Myers L (2001) Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop Relat Res 392:46–55CrossRefGoogle Scholar
  4. 4.
    Bellemans J, Robijns F, Duerinckx J, Banks S, Vandenneucker H (2005) The influence of tibial slope on maximal flexion after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 13:193–196CrossRefPubMedGoogle Scholar
  5. 5.
    Blankevoort L, Huiskes R (1996) Validation of a three-dimensional model of the knee. J Biomech 29:955–961CrossRefPubMedGoogle Scholar
  6. 6.
    Bowman KF Jr, Sekiya JK (2010) Anatomy and biomechanics of the posterior cruciate ligament, medial and lateral sides of the knee. Sports Med Arthrosc 18:222–229CrossRefPubMedGoogle Scholar
  7. 7.
    Browne C, Hermida JC, Bergula A, Colwell CW Jr, D’Lima DD (2005) Patellofemoral forces after total knee arthroplasty: effect of extensor moment arm. Knee 12:81–88CrossRefPubMedGoogle Scholar
  8. 8.
    Chambers AW, Wood AR, Kosmopoulos V, Sanchez HB, Wagner RA (2016) Effect of posterior tibial slope on flexion and anterior-posterior tibial translation in posterior cruciate-retaining total knee arthroplasty. J Arthroplasty 31:103–106CrossRefPubMedGoogle Scholar
  9. 9.
    Chang TW, Yang CT, Liu YL, Chen WC, Lin KJ, Lai YS, Huang CH, Lu YC, Cheng CK (2011) Biomechanical evaluation of proximal tibial behavior following unicondylar knee arthroplasty: modified resected surface with corresponding surgical technique. Med Eng Phys 33:1175–1182CrossRefPubMedGoogle Scholar
  10. 10.
    Dai Y, Angibaud LD, Jenny JY, Hamad C, Jung A, Cross MB (2016) A soft-tissue preserving method for evaluating the impact of posterior tibial slope on kinematics during cruciate-retaining total knee arthroplasty: a validation study. Knee 23:1074–1082CrossRefPubMedGoogle Scholar
  11. 11.
    Dorr LD, Boiardo RA (1986) Technical considerations in total knee arthroplasty. Clin Orthop Relat Res 205:5–11Google Scholar
  12. 12.
    Godest AC, Beaugonin M, Haug E, Taylor M, Gregson PJ (2002) Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. J Biomech 35:267–275CrossRefPubMedGoogle Scholar
  13. 13.
    Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105:136–144CrossRefPubMedGoogle Scholar
  14. 14.
    Halloran JP, Clary CW, Maletsky LP, Taylor M, Petrella AJ, Rullkoetter PJ (2010) Verification of predicted knee replacement kinematics during simulated gait in the Kansas knee simulator. J Biomech Eng 132:081010CrossRefPubMedGoogle Scholar
  15. 15.
    Hurley MV, Scott DL (1998) Improvements in quadriceps sensorimotor function and disability of patients with knee osteoarthritis following a clinically practicable exercise regime. Br J Rheumatol 37:1181–1187CrossRefPubMedGoogle Scholar
  16. 16.
    Innocenti B, Bellemans J, Catani F (2016) Deviations from optimal alignment in TKA: is there a biomechanical difference between femoral or tibial component alignment? J Arthroplasty 31:295–301CrossRefPubMedGoogle Scholar
  17. 17.
    Innocenti B, Truyens E, Labey L, Wong P, Victor J, Bellemans J (2009) Can medio-lateral baseplate position and load sharing induce asymptomatic local bone resorption of the proximal tibia? A finite element study. J Orthop Surg Res 4:26CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Inoue S, Akagi M, Asada S, Mori S, Zaima H, Hashida M (2016) The valgus inclination of the tibial component increases the risk of medial tibial condylar fractures in unicompartmental knee arthroplasty. J Arthroplasty 31:2025–2030CrossRefPubMedGoogle Scholar
  19. 19.
    Insall J, Scott WN, Ranawat CS (1979) The total condylar knee prosthesis. A report of two hundred and twenty cases. J Bone Joint Surg Am 61:173–180CrossRefPubMedGoogle Scholar
  20. 20.
    Insall JN, Binazzi R, Soudry M, Mestriner LA (1985) Total knee arthroplasty. Clin Orthop Relat Res 192:13–22Google Scholar
  21. 21.
    Kang KT, Kim SH, Son J, Lee YH, Kim S, Chun HJ (2017) Probabilistic evaluation of the material properties of the in vivo subject-specific articular surface using a computational model. J Biomed Mater Res B Appl Biomater 105:1390–1400CrossRefPubMedGoogle Scholar
  22. 22.
    Kang KT, Koh YG, Jung M, Nam JH, Son J, Lee YH, Kim SJ, Kim SH (2017) The effects of posterior cruciate ligament deficiency on posterolateral corner structures under gait- and squat-loading conditions: a computational knee model. Bone Joint Res 6:31–42CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kang KT, Koh YG, Son J, Kim SJ, Choi S, Jung M, Kim SH (2017) Finite element analysis of the biomechanical effects of three posterolateral corner reconstruction techniques for the knee joint. Arthroscopy 33:1537–1550CrossRefPubMedGoogle Scholar
  24. 24.
    Kang KT, Koh YG, Son J, Kwon OR, Baek C, Jung SH, Park KK (2016) Measuring the effect of femoral malrotation on knee joint biomechanics for total knee arthroplasty using computational simulation. Bone Joint Res 5:552–559CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kim YS, Kang KT, Son J, Kwon OR, Choi YJ, Jo SB, Choi YW, Koh YG (2015) Graft extrusion related to the position of allograft in lateral meniscal allograft transplantation: biomechanical comparison between parapatellar and transpatellar approaches using finite element analysis. Arthroscopy 31:2380–2391CrossRefPubMedGoogle Scholar
  26. 26.
    Kutzner I, Heinlein B, Graichen F, Bender A, Rohlmann A, Halder A, Beier A, Bergmann G (2010) Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech 43:2164–2173CrossRefPubMedGoogle Scholar
  27. 27.
    Malviya A, Lingard EA, Weir DJ, Deehan DJ (2009) Predicting range of movement after knee replacement: the importance of posterior condylar offset and tibial slope. Knee Surg Sports Traumatol Arthrosc 17:491–498CrossRefPubMedGoogle Scholar
  28. 28.
    Marra MA, Strzelczak M, Heesterbeek PJC, van de Groes SAW, Janssen DW, Koopman B, Wymenga AB, Verdonschot NJJ (2017) Anterior referencing of tibial slope in total knee arthroplasty considerably influences knee kinematics: a musculoskeletal simulation study. Knee Surg Sports Traumatol Arthrosc.  https://doi.org/10.1007/s00167-017-4561-3 PubMedGoogle Scholar
  29. 29.
    Massin P, Gournay A (2006) Optimization of the posterior condylar offset, tibial slope, and condylar roll-back in total knee arthroplasty. J Arthroplasty 21:889–896CrossRefPubMedGoogle Scholar
  30. 30.
    Matsuda S, Kawahara S, Okazaki K, Tashiro Y, Iwamoto Y (2013) Postoperative alignment and ROM affect patient satisfaction after TKA. Clin Orthop Relat Res 471:127–133CrossRefPubMedGoogle Scholar
  31. 31.
    Mesfar W, Shirazi-Adl A (2005) Biomechanics of the knee joint in flexion under various quadriceps forces. Knee 12:424–434CrossRefPubMedGoogle Scholar
  32. 32.
    Mizner RL, Petterson SC, Stevens JE, Vandenborne K, Snyder-Mackler L (2005) Early quadriceps strength loss after total knee arthroplasty. The contributions of muscle atrophy and failure of voluntary muscle activation. J Bone Joint Surg Am 87:1047–1053CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mizu-uchi H, Colwell CW Jr, Matsuda S, Flores-Hernandez C, Iwamoto Y, D’Lima DD (2011) Effect of total knee arthroplasty implant position on flexion angle before implant-bone impingement. J Arthroplasty 26:721–727CrossRefPubMedGoogle Scholar
  34. 34.
    Nisell R (1985) Mechanics of the knee. A study of joint and muscle load with clinical applications. Acta Orthop Scand Suppl 216:1–42CrossRefPubMedGoogle Scholar
  35. 35.
    Oka S, Matsumoto T, Muratsu H, Kubo S, Matsushita T, Ishida K, Kuroda R, Kurosaka M (2014) The influence of the tibial slope on intra-operative soft tissue balance in cruciate-retaining and posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 22:1812–1818CrossRefPubMedGoogle Scholar
  36. 36.
    Okamoto S, Mizu-uchi H, Okazaki K, Hamai S, Nakahara H, Iwamoto Y (2015) Effect of tibial posterior slope on knee kinematics, quadriceps force, and patellofemoral contact force after posterior-stabilized total knee arthroplasty. J Arthroplasty 30:1439–1443CrossRefPubMedGoogle Scholar
  37. 37.
    Ostermeier S, Hurschler C, Stukenborg-Colsman C (2004) Quadriceps function after TKA—an in vitro study in a knee kinematic simulator. Clin Biomech (Bristol Avon) 19:270–276CrossRefGoogle Scholar
  38. 38.
    Ostermeier S, Hurschler C, Windhagen H, Stukenborg-Colsman C (2006) In vitro investigation of the influence of tibial slope on quadriceps extension force after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 14:934–939CrossRefPubMedGoogle Scholar
  39. 39.
    Pegg EC, Walter J, Mellon SJ, Pandit HG, Murray DW, D’Lima DD, Fregly BJ, Gill HS (2013) Evaluation of factors affecting tibial bone strain after unicompartmental knee replacement. J Orthop Res 31:821–828CrossRefPubMedGoogle Scholar
  40. 40.
    Peña E, Calvo B, Martinez MA, Palanca D, Doblaré M (2006) Why lateral meniscectomy is more dangerous than medial meniscectomy. A finite element study. J Orthop Res 24:1001–1010CrossRefPubMedGoogle Scholar
  41. 41.
    Piefer JW, Pflugner TR, Hwang MD, Lubowitz JH (2012) Anterior cruciate ligament femoral footprint anatomy: systematic review of the 21st century literature. Arthroscopy 28:872–881CrossRefPubMedGoogle Scholar
  42. 42.
    Rodricks DJ, Patil S, Pulido P, Colwell CW Jr (2007) Press-fit condylar design total knee arthroplasty. 14–17-year follow-up. J Bone Joint Surg Am 89:89–95CrossRefPubMedGoogle Scholar
  43. 43.
    Shi X, Shen B, Kang P, Yang J, Zhou Z, Pei F (2013) The effect of posterior tibial slope on knee flexion in posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 21:2696–2703CrossRefPubMedGoogle Scholar
  44. 44.
    Sierra RJ, Berry DJ (2008) Surgical technique differences between posterior-substituting and cruciate-retaining total knee arthroplasty. J Arthroplasty 23:20–23CrossRefPubMedGoogle Scholar
  45. 45.
    Slemenda C, Brandt KD, Heilman DK, Mazzuca S, Braunstein EM, Katz BP, Wolinsky FD (1997) Quadriceps weakness and osteoarthritis of the knee. Ann Intern Med 127:97–104CrossRefPubMedGoogle Scholar
  46. 46.
    Stevens JE, Mizner RL, Snyder-Mackler L (2003) Quadriceps strength and volitional activation before and after total knee arthroplasty for osteoarthritis. J Orthop Res 21:775–779CrossRefPubMedGoogle Scholar
  47. 47.
    Stulberg SD, Loan P, Sarin V (2002) Computer-assisted navigation in total knee replacement: results of an initial experience in thirty-five patients. J Bone Joint Surg Am 84-A Suppl 2:90–98CrossRefGoogle Scholar
  48. 48.
    Thompson JA, Hast MW, Granger JF, Piazza SJ, Siston RA (2011) Biomechanical effects of total knee arthroplasty component malrotation: a computational simulation. J Orthop Res 29:969–975CrossRefPubMedGoogle Scholar
  49. 49.
    Vaninbroukx M, Labey L, Innocenti B, Bellemans J (2009) Cementing the femoral component in total knee arthroplasty: which technique is the best? Knee 16:265–268CrossRefPubMedGoogle Scholar
  50. 50.
    Vanlommel J, Luyckx JP, Labey L, Innocenti B, De Corte R, Bellemans J (2011) Cementing the tibial component in total knee arthroplasty: which technique is the best? J Arthroplasty 26:492–496CrossRefPubMedGoogle Scholar
  51. 51.
    Vessely MB, Whaley AL, Harmsen WS, Schleck CD, Berry DJ (2006) The Chitranjan Ranawat Award: long-term survivorship and failure modes of 1000 cemented condylar total knee arthroplasties. Clin Orthop Relat Res 452:28–34CrossRefPubMedGoogle Scholar
  52. 52.
    Wong J, Steklov N, Patil S, Flores-Hernandez C, Kester M, Colwell CW Jr, D’Lima DD (2011) Predicting the effect of tray malalignment on risk for bone damage and implant subsidence after total knee arthroplasty. J Orthop Res 29:347–353CrossRefPubMedGoogle Scholar
  53. 53.
    Wünschel M, Leasure JM, Dalheimer P, Kraft N, Wulker N, Muller O (2013) Differences in knee joint kinematics and forces after posterior cruciate retaining and stabilized total knee arthroplasty. Knee 20:416–421CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2018

Authors and Affiliations

  • Kyoung-Tak Kang
    • 1
  • Sae Kwang Kwon
    • 2
  • Juhyun Son
    • 1
  • Oh-Ryong Kwon
    • 2
  • Jun-Sang Lee
    • 2
  • Yong-Gon Koh
    • 2
  1. 1.Department of Mechanical EngineeringYonsei UniversitySeoulRepublic of Korea
  2. 2.Department of Orthopaedic Surgery, Joint Reconstruction CenterYonsei Sarang HospitalSeoulRepublic of Korea

Personalised recommendations