Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 26, Issue 2, pp 399–410 | Cite as

Neuromuscular electrical stimulation is effective in strengthening the quadriceps muscle after anterior cruciate ligament surgery

  • Annette V. HaugerEmail author
  • M. P. Reiman
  • J. M. Bjordal
  • C. Sheets
  • L. Ledbetter
  • A. P. Goode
Knee

Abstract

Purpose

Reduced ability to contract the quadriceps muscles is often found immediately following anterior cruciate ligament (ACL) surgery. This can lead to muscle atrophy and decreased function. Application of neuromuscular electrical stimulation (NMES) may be a useful adjunct intervention to ameliorate these deficits following ACL surgery. The purpose of this review was to determine whether NMES in addition to standard physical therapy is superior to standard physical therapy alone in improving quadriceps strength or physical function following ACL surgery.

Methods

A computer-assisted literature search was conducted utilizing PubMed, CINAHL, PEDro and Cochrane Library databases for randomized clinical trials where patients after ACL surgery received NMES with the outcome of muscle strength and/or physical function. Random effect models were used to pool summary estimates using standardized mean differences (SMD) for strength outcomes. Physical function outcomes were assessed qualitatively. Methodological quality was assessed from the Physiotherapy Evidence Database (PEDro)-score.

Results

Eleven studies met our inclusion criteria; results from six of these were pooled in the meta-analysis showing a statistically significant short-term effect of NMES (4–12 weeks) after surgery compared to standard physical therapy [SMD = 0.73 (95% CI 0.29, 1.16)]. Physical function also improved significantly more in the NMES groups. PEDro scores ranged from 3/10 to 7/10 points.

Conclusion

NMES in addition to standard physical therapy appears to significantly improve quadriceps strength and physical function in the early post-operative period compared to standard physical therapy alone.

Level of evidence

I.

Keywords

ACL NMES Physical therapy Muscle strength Quadriceps 

Notes

Compliance with ethical standards

Conflict of interest

The authors of this article have no conflicts of interest on the matter presented.

Funding

The study has not recieved any outside funding.

Ethical approval

No ethical approval has been necessary since sensitive information has not been provided or utilized in this review.

Supplementary material

167_2017_4669_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1329 kb)

References

  1. 1.
    Agel J, Arendt EA, Bershadsky B (2005) Anterior cruciate ligament injury in National Collegiate Athletic Association basketball and soccer a 13-year review. Am J Sports Med 33(4):524–531CrossRefPubMedGoogle Scholar
  2. 2.
    Ardern CL, Taylor NF, Feller JA, Webster KE (2014) Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: an updated systematic review and meta-analysis including aspects of physical functioning and contextual factors. Br J Sports Med 33(21):1543–1552CrossRefGoogle Scholar
  3. 3.
    Arvidsson I, Arvidsson H, Eriksson E, Jansson E (1986) Prevention of quadriceps wasting after immobilization: an evaluation of the effect of electrical stimulation. Orthopedics 9(11):1519–1528PubMedGoogle Scholar
  4. 4.
    Barber-Westin SD, Noyes FR (2011) Factors used to determine return to unrestricted sports activities after anterior cruciate ligament reconstruction. Arthroscopy 27(12):1697–1705CrossRefPubMedGoogle Scholar
  5. 5.
    Currier DP, Ray JM, Nyland J, Rooney JG, Noteboom JT, Kellogg R (1993) Effects of electrical and electromagnetic stimulation after anterior cruciate ligament reconstruction. JOSPT J Orthop Sports Phys Ther 17(4):177–184CrossRefPubMedGoogle Scholar
  6. 6.
    de Morton NA (2009) The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother 55(2):129–133CrossRefPubMedGoogle Scholar
  7. 7.
    Delitto A, Rose SJ, McKowen JM, Lehman RC, Thomas JA, Shively RA (1988) Electrical stimulation versus voluntary exercise in strengthening thigh musculature after anterior cruciate ligament surgery. Phys Ther 68(5):660–663CrossRefPubMedGoogle Scholar
  8. 8.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188CrossRefPubMedGoogle Scholar
  9. 9.
    Draper V, Ballard L (1991) Electrical stimulation versus electromyographic biofeedback in the recovery of quadriceps femoris muscle function following anterior cruciate ligament surgery. Phys Ther 71(6):455–461CrossRefPubMedGoogle Scholar
  10. 10.
    Draper V, Lyle L, Seymour T (1997) From the Field-EMG biofeedback versus electrical stimulation in the recovery of quadriceps surface EMG. Clin Kinesiol 51:28–32Google Scholar
  11. 11.
    Ediz L, Ceylan MF, Turktas U, Yanmis I, Hiz O (2012) A randomized controlled trial of electrostimulation effects on effussion, swelling and pain recovery after anterior cruciate ligament reconstruction: a pilot study. Clin Rehabil 26(5):413–422CrossRefPubMedGoogle Scholar
  12. 12.
    Eriksson E, Häggmark T (1979) Comparison of isometric muscle training and electrical stimulation supplementing isometric muscle training in the recovery after major knee ligament surgery: a preliminary report. Am J Sports Med 7(3):169–171CrossRefPubMedGoogle Scholar
  13. 13.
    Feil S, Newell J, Minogue C, Paessler HH (2011) The effectiveness of supplementing a standard rehabilitation program with superimposed neuromuscular electrical stimulation after anterior cruciate ligament reconstruction: a prospective, randomized, single-blind study. Am J Sports Med 39(6):1238–1247CrossRefPubMedGoogle Scholar
  14. 14.
    Fitzgerald GK, Piva SR, Irrgang JJ (2003) A modified neuromuscular electrical stimulation protocol for quadriceps strength training following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 33(9):492–501CrossRefPubMedGoogle Scholar
  15. 15.
    Hart JM, Pietrosimone B, Hertel J, Ingersoll CD (2010) Quadriceps activation following knee injuries: a systematic review. J Athl Train 45(1):87–97CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hasegawa S, Kobayashi M, Arai R, Tamaki A, Nakamura T, Moritani T (2011) Effect of early implementation of electrical muscle stimulation to prevent muscle atrophy and weakness in patients after anterior cruciate ligament reconstruction. J Electromyogr Kinesiol 21(4):622–630CrossRefPubMedGoogle Scholar
  17. 17.
    Higgins J, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558CrossRefPubMedGoogle Scholar
  18. 18.
    Hopkins JT, Ingersoll CD (2000) Arthrogenic muscle inhibition: a limiting factor in joint rehabilitation. J Sport Rehabil 9(2):135–159CrossRefGoogle Scholar
  19. 19.
    Imoto AM, Peccin S, Almeida GJM, Saconato H, Atallah ÁN (2011) Effectiveness of electrical stimulation on rehabilitation after ligament and meniscal injuries: a systematic review. Sao Paulo Med J 129(6):414–423CrossRefPubMedGoogle Scholar
  20. 20.
    Kim K-M, Croy T, Hertel J, Saliba S (2010) Effects of neuromuscular electrical stimulation after anterior cruciate ligament reconstruction on quadriceps strength, function, and patient-oriented outcomes: a systematic review. J Orthop Sports Phys Ther 40(7):383–391CrossRefPubMedGoogle Scholar
  21. 21.
    Lentz TA, Zeppieri G Jr, Tillman SM, Indelicato PA, Moser MW, George SZ, Chmielewski TL (2012) Return to preinjury sports participation following anterior cruciate ligament reconstruction: contributions of demographic, knee impairment, and self-report measures. J Orthop Sports Phys Ther 42(11):893–901CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lepley LK, Wojtys EM, Palmieri-Smith RM (2015) Combination of eccentric exercise and neuromuscular electrical stimulation to improve quadriceps function post-ACL reconstruction. Knee 22(3):270–277CrossRefPubMedGoogle Scholar
  23. 23.
    Lieber RL, Silva PD, Daniel DM (1996) Equal effectiveness of electrical and volitional strength training for quadriceps femoris muscles after anterior cruciate ligament surgery. J Orthop Res 14(1):131–138CrossRefPubMedGoogle Scholar
  24. 24.
    Littell JH, Corcoran J, Pillai V (2008) Systematic reviews and meta-analysis. Oxford University Press, Oxford, pp 60–71CrossRefGoogle Scholar
  25. 25.
    Low J, Reen A (2000) Electrotherapy explained: principles and practice. Butterworth-Heinemann, Oxford, pp 70–76Google Scholar
  26. 26.
    Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M (2003) Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther 83(8):713–721PubMedGoogle Scholar
  27. 27.
    Mall NA, Chalmers PN, Moric M, Tanaka MJ, Cole BJ, Bach BR Jr, Paletta GA Jr (2014) Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med 42(10):2363–2370CrossRefPubMedGoogle Scholar
  28. 28.
    Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Stewart LA (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Sys Rev 4(1):1CrossRefGoogle Scholar
  29. 29.
    Moksnes H, Risberg MA (2009) Performance-based functional evaluation of non-operative and operative treatment after anterior cruciate ligament injury. Scand J Med Sci Sports 19(3):345–355CrossRefPubMedGoogle Scholar
  30. 30.
    Morrissey MC, Brewster CE, Shields CL Jr, Brown M (1985) The effects of electrical stimulation on the quadriceps during postoperative knee immobilization. Am J Sports Med 13(1):40–45CrossRefPubMedGoogle Scholar
  31. 31.
    Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE (2014) Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport. Am J Sports Med 42(7):1567–1573CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Paternostro-Sluga T, Fialka C, Alacamliogliu Y, Saradeth T, Fialka-Moser V (1999) Neuromuscular electrical stimulation after anterior cruciate ligament surgery. Clin Orthop Relat Res 368:166–175CrossRefGoogle Scholar
  33. 33.
    PEDro. PEDro, Physiotherapy Evidence Database. 2016 04.04.2016 [cited 2016 04.22.2016]; http://www.pedro.org.au/english/faq/#question_five
  34. 34.
    Ross M (2000) The effect of neuromuscular electrical stimulation during closed kinetic chain exercise on lower extremity performance following anterior cruciate ligament reconstruction. Res Sports Med 9(4):239–251Google Scholar
  35. 35.
    Saka T (2014) Principles of postoperative anterior cruciate ligament rehabilitation. World J Orthop 5(4):450–459CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sisk TD, Stralka SW, Deering MB, Griffin JW (1987) Effect of electrical stimulation on quadriceps strength after reconstructive surgery of the anterior cruciate ligament. Am J Sports Med 15(3):215–220CrossRefPubMedGoogle Scholar
  37. 37.
    Snyder-Mackler L, Ladin Z, Schepsis AA, Young JC (1991) Electrical stimulation of the thigh muscles after reconstruction of the anterior cruciate ligament. Effects of electrically elicited contraction of the quadriceps femoris and hamstring muscles on gait and on strength of the thigh muscles. J Bone Joint Surg Am 73(7):1025–1036CrossRefPubMedGoogle Scholar
  38. 38.
    Snyder-Mackler L, Delitto A, Bailey SL, Stralka SW (1995) Strength of the quadriceps femoris muscle and functional recovery after reconstruction of the anterior cruciate ligament. A prospective, randomized clinical trial of electrical stimulation. J Bone Joint Surg Am 77(8):1166–1173CrossRefPubMedGoogle Scholar
  39. 39.
    Taradaj J, Halski T, Kucharzewski M, Walewicz K, Smykla A, Ozon M, Pasternok M (2013) The effect of neuromuscular electrical stimulation on quadriceps strength and knee function in professional soccer players: return to sport after ACL reconstruction. Biomed Res Int 2013:802534. doi: 10.1155/2013/802534 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Thomeé R, Kvist J (2015) Structured Rehabilitation Model with Clinical Outcomes After Anterior Cruciate Ligament Reconstruction. In: Doral MN, Karlsson J (eds) Sports injuries. Springer, Berlin, pp 1439–1465Google Scholar
  41. 41.
    Urbach D, Nebelung W, Weiler HT, Awiszus F (1999) Bilateral deficit of voluntary quadriceps muscle activation after unilateral ACL tear. Med Sci Sports Exerc 31(12):1691–1696CrossRefPubMedGoogle Scholar
  42. 42.
    Wigerstad-Lossing I, Grimby G, Jonsson T, Morelli B, Peterson L, Renström P (1988) Effects of electrical muscle stimulation combined with voluntary contractions after knee ligament surgery. Med Sci Sports Exerc 20(1):93–98CrossRefPubMedGoogle Scholar
  43. 43.
    Wright RW, Preston E, Fleming B, Amendola A, Andrish JT, Bergfeld JA, Dunn WR, Kaeding C, Kuhn JE, Marx RG, McCarty EC, Parker RC, Spindler KP, Wolcott M, Wolf BR, Williams GN (2008) A systematic review of anterior cruciate ligament reconstruction rehabilitation: part II: open versus closed kinetic chain exercises, neuromuscular electrical stimulation, accelerated rehabilitation, and miscellaneous topics. J Knee Surg 21(3):225–234CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Young A (1993) Current issues in arthrogenous inhibition. Ann Rheum Dis 52(11):829–834CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2017

Authors and Affiliations

  • Annette V. Hauger
    • 1
    Email author
  • M. P. Reiman
    • 2
  • J. M. Bjordal
    • 3
    • 4
  • C. Sheets
    • 5
  • L. Ledbetter
    • 6
  • A. P. Goode
    • 2
    • 7
    • 8
  1. 1.Health Science, Physical TherapyOslo and Akershus University CollegeOsloNorway
  2. 2.Duke University Medical CenterDuke UniversityDurhamUSA
  3. 3.Physiotherapy Research Group, Department of Global Public Health and Primary CareUniversity of BergenBergenNorway
  4. 4.Center for Evidence-Based PracticeBergen University CollegeBergenNorway
  5. 5.Department of Physical TherapyUniversity of North CarolinaChapel HillUSA
  6. 6.Duke University Medical Center LibraryDuke UniversityDurhamUSA
  7. 7.Bergen University CollegeBergenNorway
  8. 8.Duke Clinical Research InstituteDuke UniversityDurhamUSA

Personalised recommendations