Permanent knee sensorimotor system changes following ACL injury and surgery

  • John NylandEmail author
  • Collin Gamble
  • Tiffany Franklin
  • David N. M. Caborn


The cruciate ligaments are components of the knee capsuloligamentous system providing vital neurosensory and biomechanical function. Since most historical primary ACL repair attempts were unsuccessful, reconstruction has become the preferred surgery. However, an increased understanding of the efficacy of lesion-site scaffolding, innovative suturing methods and materials, and evolving use of biological healing mediators such as platelet-rich plasma and stem cells has prompted reconsideration of what was once believed to be impossible. A growing number of in vivo animal studies and prospective clinical studies are providing increasing support for this intervention. The significance of ACL repair rather than reconstruction is that it more likely preserves the native neurosensory system, entheses, and ACL footprints. Tissue preservation combined with restored biomechanical function increases the likelihood for premorbid neuromuscular control system and dynamic knee stability recovery. This recovery should increase the potential for more patients to safely return to sports at their desired intensity and frequency. This current concepts paper revisits cruciate ligament neurosensory and neurovascular anatomy from the perspective of knee capsuloligamentous system function. Peripheral and central nerve pathways and central cortical representation mapping are also discussed. Surgical restoration of a more physiologically sound knee joint may be essential to solving the osteoarthritis dilemma. Innovative rehabilitative strategies and outcome measurement methodologies using more holistic and clinically relevant measurements that closely link biomechanical and neurosensory characteristics of physiological ACL function are discussed. Greater consideration of task-specific patient physical function and psychobehavioral links should better delineate the true efficacy of all ACL surgical and non-surgical interventions.

Level of evidence IV.


Proprioception Neuroanatomy Repair biology Neuromuscular control Therapeutic exercise 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


This study received no funding to complete.

Ethical approval

This study did not require ethics approval at its institution.

Informed consent

As there was no individual participants in this study informed consent was not required.


  1. 1.
    Claes S, Vereecke E, Maes M, Victor J, Verdonk P, Bellemans J (2013) Anatomy of the anterolateral ligament of the knee. J Anat 223(4):321–328PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Daggett M, Claes S, Helito CP et al (2016) The role of the anterolateral structures and the ACL in controlling laxity of the intact and ACL-deficient knee: letter to the editor. Am J Sports Med 44(4):NP14–15eCrossRefGoogle Scholar
  3. 3.
    Ferretti A, Monaco E, Fabbri M, Maestri B, De Carli A (2017) Prevalence and classification of injuries of anterolateral complex in acute anterior cruciate ligament tears. Arthroscopy  33:147–154 PubMedCrossRefGoogle Scholar
  4. 4.
    Hewison CE, Tran MN, Kaniki N, Remtulla A, Bryant D, Getgood AM (2015) Lateral extra-articular tenodesis reduces rotational laxity when combined with anterior cruciate ligament reconstruction: a systematic review of the literature. Arthroscopy 31:2022–2034PubMedCrossRefGoogle Scholar
  5. 5.
    Kennedy MI, Claes S, Fuso FA et al (2015) The anterolateral ligament: an anatomic, radiographic, and biomechanical analysis. Am J Sports Med 43:1606–1615PubMedCrossRefGoogle Scholar
  6. 6.
    Roessler PP, Schüttler KF, Heyse TJ, Wirtz DC, Efe T (2016) The anterolateral ligament (ALL) and its role in rotational extra-articular stability of the knee joint: a review of anatomy and surgical concepts. Arch Orthop Trauma Surg 136:305–313PubMedCrossRefGoogle Scholar
  7. 7.
    Muneta T, Koga H, Young-Jin J, Horie M, Nakamura T, Sekiya I (2013) Remnant volume of anterior cruciate correlates preoperative patients’ status and postoperative outcome. Knee Surg Sports Traumatol Arthrosc 21:906–913PubMedCrossRefGoogle Scholar
  8. 8.
    Ochi M, Murao T, Sumen Y, Kobayashi K, Adachi N (1999) Isolated posterior cruciate ligament insufficiency induces morphological changes of anterior cruciate ligament collagen fibrils. Arthroscopy 15:292–296PubMedCrossRefGoogle Scholar
  9. 9.
    Anoka N, Nyland J, McGinnis M, Lee D, Doral MN, Caborn DN (2012) Consideration of growth factors and bio-scaffolds for treatment of combined grade II MCL and ACL injury. Knee Surg Sports Traumatol Arthrosc 20:878–888PubMedCrossRefGoogle Scholar
  10. 10.
    Johansson H, Sjolander P, Sojka P et al (1989) Reflex actions on the gamma muscle spindle systems of muscles acting at the knee joint elicited by stretch of the posterior cruciate ligament. Neuro Orthoped 8:9–21Google Scholar
  11. 11.
    Johansson H, Sjolander P, Sojka P (1991) A sensory role for the cruciate ligaments. Clin Orthop Relat Res 268:161–178Google Scholar
  12. 12.
    Kennedy JC, Alexander IJ, Hayes KC (1982) Nerve supply of the human knee and its functional importance. Am J Sports Med 10:329–335PubMedCrossRefGoogle Scholar
  13. 13.
    Kennedy JC, Weinberg HW, Wilson AS (1974) The anatomy and function of the anterior cruciate ligament. As determined by clinical and morphological studies. J Bone Joint Surg Am 56:223–235PubMedCrossRefGoogle Scholar
  14. 14.
    Mall NA, Chalmers PN, Moric M et al (2014) Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med 42:2363–2370PubMedCrossRefGoogle Scholar
  15. 15.
    McLean SG (2008) The ACL injury enigma: we can’t prevent what we don’t understand. J Athl Train 43:538–540PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Rodriguez-Merchan EC (2015) Evidence-based ACL reconstruction. Arch Bone Jt Surg 3:9–12PubMedPubMedCentralGoogle Scholar
  17. 17.
    Feagin JA, Pierce CM, Geyer MR (2013) ACL primary repair: what we did, the results, and how it helps today to tailor treatments to the patient and the pathology. Chapter 8. In: Sanchis-Alfonso V, Monllau JC (eds) The ACL-deficient knee. Springer-Verlag, London, pp 97–104CrossRefGoogle Scholar
  18. 18.
    Ardern CL, Taylor NF, Feller JA, Whitehead TS, Webster KE (2013) Psychological responses matter in returning to preinjury level of sport after anterior cruciate ligament reconstruction surgery. Am J Sports Med 41:1549–1558PubMedCrossRefGoogle Scholar
  19. 19.
    Holm I, Oistad BE, Risberg MA, Aune AK (2010) No difference in knee function or prevalence of osteoarthritis after reconstruction of the anterior cruciate ligament with 4-strand hamstring autograft versus patellar tendon-bone autograft: a randomized study with 10-year follow-up. Am J Sports Med 38:448–454PubMedCrossRefGoogle Scholar
  20. 20.
    Mai HT, Alvarez AP, Freshman RD et al (2016) The NFL Orthopaedic Surgery Outcomes Database (NO-SOD): the effect of common orthopaedic procedures on football careers. Am J Sports Med 44:2255–2262PubMedCrossRefGoogle Scholar
  21. 21.
    Oiestand BE, Holm I, Aune AK et al (2010) Knee function and prevalence of knee osteoarthritis after anterior cruciate ligament reconstruction: a prospective study with 10 to 15 years of follow-up. Am J Sports Med 38:2201–2210CrossRefGoogle Scholar
  22. 22.
    Tjong VK, Murnaghan L, Nyhof-Young JM, Ogilvie-Harris DJ (2014) A qualitative investigation of the decision to return to sport after anterior cruciate ligament reconstruction: to play or not to play. Am J Sports Med 42:336–342PubMedCrossRefGoogle Scholar
  23. 23.
    Aglietti P, Giron F, Cuomo P, Losco M, Mondanelli N (2007) Single- and double-bundle incision double-bundle ACL reconstruction. Clin Orthop Relat Res 454:108–113PubMedCrossRefGoogle Scholar
  24. 24.
    Crawford C, Nyland J, Landes S, Jackson R, Chang HC, Nawab A, Caborn DN (2007) Anatomic double bundle ACL reconstruction: a literature review. Knee Surg Sports Traumatol Arthrosc 15:946–964PubMedCrossRefGoogle Scholar
  25. 25.
    Jarvela T (2007) Double bundle versus single-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 15:500–507PubMedCrossRefGoogle Scholar
  26. 26.
    Kondo E, Yasuda K, Azuma H, Tanabe Y, Yagi T (2008) Prospective clinical comparisons of anatomic double-bundle versus single-bundle anterior cruciate ligament reconstruction procedures in 328 consecutive patients. Am J Sports Med 36:1675–1687PubMedCrossRefGoogle Scholar
  27. 27.
    Muneta T, Koga H, Mochizuki T et al (2007) A prospective randomized study of 4-strand semitendinosus tendon anterior cruciate ligament reconstruction comparing single-bundle and double-bundle techniques. Arthroscopy 23:618–628PubMedCrossRefGoogle Scholar
  28. 28.
    Woo SL, Kanamori A, Zeminski J, Yagi M, Papageorgiou C, Fu FH (2002) The effectiveness of reconstruction of the anterior cruciate ligament with hamstrings and patellar tendon. A cadaveric study comparing anterior tibial and rotational loads. J Bone Joint Surg Am 84:907–914PubMedCrossRefGoogle Scholar
  29. 29.
    Yagi M, Kuroda R, Nagamune K, Yoshiya S, Kurosaka R (2007) Double-bundle ACL reconstruction can improve rotational stability. Clin Orthop Relat Res 454:100–107PubMedCrossRefGoogle Scholar
  30. 30.
    Koga H, Muneta T, Yagishita K et al (2015) Evaluation of a behind-remnant approach for femoral tunnel creation in remnant-preserving double-bundle anterior cruciate ligament reconstruction—comparison with standard approach. Knee 22:249–255PubMedCrossRefGoogle Scholar
  31. 31.
    Kurosawa H (1997) Conservative repair for acute anterior cruciate ligament injury. In: Niwa S, Yoshino S, Kurosaka M, Shino K, Yamamoto S (eds) Reconstruction of the knee joint. Springer-Verlag, Tokyo, pp 28–35CrossRefGoogle Scholar
  32. 32.
    Colombet P, Dejour D, Panisset JC, Siebold R (2010) The French Arthroscopy Society: current concept of partial anterior cruciate ligament ruptures. Orthop Traumatol Surg Res 965:S109–S118CrossRefGoogle Scholar
  33. 33.
    Lee BI, Min KD, Choi HS et al (2009) Immunohistochemical study of mechanoreceptors in the tibial remnant of the ruptured anterior cruciate ligament in human knees. Knee Surg Sports Traumatol Arthrosc 17:1095–1101PubMedCrossRefGoogle Scholar
  34. 34.
    Siebold R, Fu FH (2008) Assessment and augmentation of symptomatic anteriomedial and posterolateral bundle tears of the anterior cruciate ligament. Arthroscopy 24:1289–1298PubMedCrossRefGoogle Scholar
  35. 35.
    Yasuda K, Kondo E, Kitamura N, Kawaguchi Y, Kai S, Tanabe Y (2012) A pilot study of antatomic double-bundle anterior cruciate ligament reconstruction with ligament remnant tissue preservation. Arthroscopy 28:343–353PubMedCrossRefGoogle Scholar
  36. 36.
    Kapreli E, Athanasopoulos S (2006) The anterior cruciate ligament deficiency as a model of brain plasticity. Med Hypotheses 67:645–650PubMedCrossRefGoogle Scholar
  37. 37.
    Kapreli E, Athanasopoulos S, Gliatis J et al (2009) Anterior cruciate ligament deficiency causes brain plasticity: a functional MRI study. Am J Sports Med 37:2419–2426PubMedCrossRefGoogle Scholar
  38. 38.
    Staines WR, Mcllroy WE, Brooke JD (2001) Cortical representation of whole-body movement is modulated by proprioceptive discharge in humans. Exp Brain Res 138:235–242PubMedCrossRefGoogle Scholar
  39. 39.
    Nyland J, Mattocks A, Kibbe S, Kalloub A, Greene JW, Caborn DN (2016) Anterior cruciate ligament reconstruction, rehabilitation, and return to play: 2015 update. Open Access J Sports Med 7:21–32PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Pietrosimone B, Lepley AS, Harkey MS et al (2016) Quadriceps strength predicts self-reported function post ACL reconstruction. Med Sci Sports Exerc 48:1671–1677 PubMedCrossRefGoogle Scholar
  41. 41.
    Steadman JR, Matheny LM, Briggs KK, Rodkey WG, Carreira DS (2012) Outcomes following healing response in older, active patients: a primary anterior cruciate ligament repair technique. J Knee Surg 25:255–260PubMedCrossRefGoogle Scholar
  42. 42.
    Büchler L, Regli D, Evangelopoulos DS et al (2016) Functional recovery following primary ACL repair with dynamic intraligamentary stabilization. Knee 23:549–553PubMedCrossRefGoogle Scholar
  43. 43.
    Kohl S, Evangelopoulos DS, Schär MO et al (2016) Dynamic intraligamentary stabilisation: initial experience with treatment of acute ACL ruptures. Bone Joint J 98-B:793–798PubMedCrossRefGoogle Scholar
  44. 44.
    Smith JO, Yasen SK, Palmer HC, Lord BR, Britton EM, Wilson AJ (2016) Paediatric ACL repair reinforced with temporary internal bracing. Knee Surg Sports Traumatol Arthrosc 24:1845–1851PubMedCrossRefGoogle Scholar
  45. 45.
    Koga H, Muneta T, Yagishita K, Ju YJ, Sekiya I (2012) Surgical management of grade 3 medial knee injuries combined with cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 20:88–94PubMedCrossRefGoogle Scholar
  46. 46.
    Nguyen DT, Dellbrügge S, Tak PP, Woo SL, Blankevoort L, van Dijk NC (2015) Histological characteristics of ligament healing after bio-enhanced repair of the transected goat ACL. J Exp Orthop 2:4. doi: 10.1186/s40634-015-0021-5 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Angoules AG (2013) Anterior cruciate ligament mechanoreceptors regeneration following reconstruction using autografts. J Sports Med Doping Stud 3:e136. doi: 10.4172/2161-0673.1000e136 Google Scholar
  48. 48.
    Ochi M, Iwasa J, Uchio Y, Adachi N, Sumen Y (1999) The regeneration of sensory neurones in the reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 81:902–906PubMedCrossRefGoogle Scholar
  49. 49.
    Collins NJ, Misra D, Felson DT, Crossley KM, Roos E (2011) Measures of knee function: International Knee Documentation Committee (IKDC) Subjective Knee Evaluation form, Knee Injury and Osteo-arthritis Outcome Score (KOOS), Knee Injury and Osteoarthritis Outcome Score Physical Function Short Form (KOOS-PS), Knee Outcome Survey Activities of Daily Living Scale (KOS-ADL), Lysholm Knee Scoring Scale, Oxford Knee Score (OKS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Activity Rating Scale (ARS), and Tegner Activity Score (TAS). Arthritis Care Res (Hoboken) 63:S208–S228CrossRefGoogle Scholar
  50. 50.
    Irrgang JJ (2008) Current status of measuring clinical outcomes after anterior cruciate ligament reconstruction: are we good enough? Oper Tech Sports Med 16:119–124CrossRefGoogle Scholar
  51. 51.
    Vavken P, Murray MM (2011) The potential for primary repair of the ACL. Sports Med Arthrosc 19:44–49PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Arnoczky SP (1983) Anatomy of the anterior cruciate ligament. Clin Orthop Relat Res 172:19–25Google Scholar
  53. 53.
    Sasaki N, Ishibashi Y, Tsuda E et al (2012) The femoral insertion of the anterior cruciate ligament: discrepancy between macroscopic and histological observations. Arthroscopy 28:1135–1146PubMedCrossRefGoogle Scholar
  54. 54.
    Siebold R, Schuhmacher P, Fernandez F et al (2015) Flat midsubstance of the anterior cruciate ligament with tibial "C"-shaped insertion site. Knee Surg Sports Traumatol Arthrosc 23:3136–3142PubMedCrossRefGoogle Scholar
  55. 55.
    Śmigielski R, Zdanowicz U, Drwięga M, Ciszek B, Ciszkowska-Łysoń B, Siebold R (2015) Ribbon like appearance of the midsubstance fibres of the anterior cruciate ligament close to its femoral insertion site: a cadaveric study including 111 knees. Knee Surg Sports Traumatol Arthrosc 23:3143–3150PubMedCrossRefGoogle Scholar
  56. 56.
    Tsukada H, Ishibashi Y, Tsuda E, Fukuda A, Toh S (2008) Anatomical analysis of the anterior cruciate ligament femoral and tibial footprints. J Orthop Sci 13:122–129PubMedCrossRefGoogle Scholar
  57. 57.
    Azangwe G, Mathias KJ, Marshall D (2000) Macro and microscopic examination of the ruptured surfaces of the anterior cruciate ligament of rabbits. J Bone Joint Surg Br 82:450–456PubMedCrossRefGoogle Scholar
  58. 58.
    Benjamin M, Moriggi B, Brenner E, Emergy P, McGonagle D, Redman S (2004) The “Enthesis Organ” concept: why enthesopathies may not present as focal insertional disorders. Arthritis Rheum 50:3306–3313PubMedCrossRefGoogle Scholar
  59. 59.
    Benjamin M, McGonagle D (2001) The anatomical basis for disease localization in seronegative spondyloarthropathy at entheses and related sites. J Anat 199:503–526PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Arnoczky SP (1985) Blood supply to the anterior cruciate ligament and supporting structures. Orthop Clin N Am 16:15–28Google Scholar
  61. 61.
    Toy BJ, Yeasting RA, Morse DE, McCann P (1995) Arterial supply to the human anterior cruciate ligament. J Athl Train 30:149–152PubMedPubMedCentralGoogle Scholar
  62. 62.
    De Rooster H, De Bruin T, Van Bree H (2006) Morphologic and functional features of the canine cruciate ligaments. Vet Surg 35:769–780PubMedCrossRefGoogle Scholar
  63. 63.
    Dhillon MS., Ball K, Prabhakar S (2012) Differences among mechanoreceptors in healthy and injured anterior cruciate ligaments and their clinical importance. Muscles Ligaments Tendon J 2:38–43Google Scholar
  64. 64.
    Franchi A, Zaccherotti G, Aglietti P (1995) Neural system of the human posterior cruciate ligament in osteoarthritis. J Arthroplasty 10:679–682PubMedCrossRefGoogle Scholar
  65. 65.
    Halata Z, Haus J (1989) The ultrastructure of sensory endings in human anterior cruciate ligament. Anat Embryol 179:415–421PubMedCrossRefGoogle Scholar
  66. 66.
    Hogervorst T, Brand RA (1998) Mechanoreceptors in joint function. J Bone Joint Surg Am 80:1365–1378PubMedCrossRefGoogle Scholar
  67. 67.
    Katonis P, Papouisidakis A, Aligizakis, Tzanakakis G, Kontakis GM, Papagelopoulos PJ (2008) Mechanoreceptors of the posterior cruciate ligament. J Int Med Res 36:387–393PubMedCrossRefGoogle Scholar
  68. 68.
    Katonis PG, Assimakopoulos AP, Agapitos MV, Exarchou EI (1991) Mechanoreceptors in the posterior cruciate ligament: histologic study on cadaver knees. Acta Orthop Scand 62:276–278PubMedCrossRefGoogle Scholar
  69. 69.
    Krauspe R, Schmidt M, Schaible H-G (1992) Sensory innervations of the anterior cruciate ligament. J Bone Joint Surg Am 74:390–397PubMedCrossRefGoogle Scholar
  70. 70.
    Miyatsu M, Atsuta Y, Watakabe M (1993) The physiology of mechanoreceptors in the anterior cruciate ligament. An experimental study in decerebrate-spinalised animals. J Bone Joint Surg Br 75:653–657PubMedGoogle Scholar
  71. 71.
    Nyland J, Brosky T, Currier D, Nitz A, Caborn D (1994) Review of the afferent neural system of the knee and its contribution to motor learning. J Orthop Sports Phys Ther 19:2–11PubMedCrossRefGoogle Scholar
  72. 72.
    O’Connor BL, Woodbury P (1982) The primary articular nerves to the dogs knee. J Anat 134:563–572PubMedPubMedCentralGoogle Scholar
  73. 73.
    Petersen W, Tillmann B (1999) Structure and vascularization of the cruciate ligaments of the human knee joint. Anat Embryol 200:325–334PubMedCrossRefGoogle Scholar
  74. 74.
    Schultz RA, Miller DC, Kerr CS et al (1984) Mechanoreceptors in human cruciate ligaments: a histological study. J Bone Joint Surg Am 66:1072–1076PubMedCrossRefGoogle Scholar
  75. 75.
    Yahia LH, Newman NW, St-Georges M (1992) Innervation of the canine cruciate ligaments. A neurohistological study. Anat Histol Embryol 21:1–8PubMedCrossRefGoogle Scholar
  76. 76.
    Freeman MAR, Wyke B (1967) The innervation of the knee joint. An anatomical and histological study in the cat. J Anat 101:505–532PubMedPubMedCentralGoogle Scholar
  77. 77.
    Adachi N, Ochi M, Uchio Y, Iwasa J, Ryoke K, Kuriwaka M (2002) Mechanoreceptors in the anterior cruciate ligament contribute to the joint position sense. Acta Orthop Scand 73:330–334PubMedCrossRefGoogle Scholar
  78. 78.
    Godinho P, Nicoliche E, Cossich V, de Sousa EB, Velaques B, Salles JI (2014) Proprioceptive deficit in patients with complete tearing of the anterior cruciate ligament. Rev Bras Ortop 49:613–618PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Sjolander P, Johansson H, Djupsjobacka M (2002) Spinal and superaspinal effects of activity in ligament afferents. J Electromyogr Kinesiol 12:167–176PubMedCrossRefGoogle Scholar
  80. 80.
    O’Connor BL, Seipel J (1983) Anatomical variations of the posterior articular nerve to the cat knee joint. J Anat 136:27–34PubMedPubMedCentralGoogle Scholar
  81. 81.
    Solomonow M, Krogsgaard M (2001) Sensorimotor control of knee stability. A review. Scan J Med Sci Sports 11:64–80CrossRefGoogle Scholar
  82. 82.
    Biedert RM, Stauffer E, Friederich NF (1992) Occurrence of free nerve endings in the soft tissue of the knee joint. A histologic investigation. Am J Sports Med 20:430–433PubMedCrossRefGoogle Scholar
  83. 83.
    Hebert-Blouin M-N, Tubbs RS, Carmichael SW, Spinner RJ (2014) Hilton’s law revisited. Clin Anat 27:548–555PubMedCrossRefGoogle Scholar
  84. 84.
    Biedert RM, Zwick EB (1998) Ligament-muscle reflex arc after anterior cruciate ligament reconstruction: electromyographic evaluation. Arch Orthop Trauma Surg 118:81–84PubMedCrossRefGoogle Scholar
  85. 85.
    Gomez-Barrena E, Bonsfills N, Martin JG, Ballesteros-Masso R, Foruria A, Nunez-Molina A (2008) Insufficient recovery of neuromuscular activity around the knee after experimental anterior cruciate ligament reconstruction. Acta Orthop Scand 79:39–47CrossRefGoogle Scholar
  86. 86.
    Shanahan CJ, Hodges PW, Wrigley TV, Bennell KL, Farrell MJ (2015) Organisation of the motor cortex differs between people with and without knee osteoarthritis. Arthritis Res Ther 17:164PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Kerver ALA, Leliveld MS, den Hartog D, Verhofstad MHJ, Kleinrensink GJ (2013) The surgical anatomy of the infrapatellar branch of the saphenous nerve in relation to incisions for anteromedial knee surgery. J Bone Joint Surg Am 95:2119–2125PubMedCrossRefGoogle Scholar
  88. 88.
    Noyes FR, Grood ES (1987) Classification of ligament injuries: why an anterolateral laxity or anteromedial laxity is not a diagnostic entity. Instr Course Lect 36:185–200PubMedGoogle Scholar
  89. 89.
    Terry GC, Hughston JC (1985) Associated joint pathology in the anterior cruciate-deficient knee with emphasis on a classification system and injuries to the meniscocapsular ligament-musculotendinous unit complex. Orthop Clin N Am 16:29–39Google Scholar
  90. 90.
    Crystal R, Malone AA, Eastwood DM (2005) Motor points for neuromuscular blockade of the adductor muscle group. Clin Orthop Relat Res 437:196–200CrossRefGoogle Scholar
  91. 91.
    Fanelli A, Ghisi D, Melotti RM (2016) An update around the evidence base for the lower extremity ultrasound regional block technique. F1000Res. doi: 10.12688/f1000research.7199.1 Google Scholar
  92. 92.
    Glasser MF, Coalson TS, Robinson EC et al (2016) A multi-modal parcellation of human cerebral cortex. Nature. doi: 10.1038/nature18933 PubMedCentralGoogle Scholar
  93. 93.
    Grooms DR, Myer GD (2016) Upgraded hardware-what about the software? Brain updates for return to play following ACL reconstruction. Br J Sports Med. doi: 10.1136/bjsports-2016-096658 (pii:bjsports-2016-096658, [Epub ahead of print]) PubMedGoogle Scholar
  94. 94.
    Grooms DR, Page SJ, Nichols-Larsen DS, Chaudhari AM, White SE, Onate JA (2016) Neuroplasticity associated with anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 5:1–27Google Scholar
  95. 95.
    Grooms DR, Page SJ, Onate JA (2015) Brain activation for knee movement measured days before second anterior cruciate ligament injury: neuroimaging in musculoskeletal medicine. J Athl Train 50:1005–1010PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kuenze CM, Hertel J, Weltman A, Diduch D, Saliba SA, Hart JM (2015) Persistent neuromuscular and corticomotor quadriceps asymmetry after anterior cruciate ligament reconstruction. J Athl Train 50:303–312PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Lepley AS, Gribble PA, Thomas AC, Tevald MA, Sohn DH, Pietrosimone BG (2015) Quadriceps neural alterations in anterior cruciate ligament reconstructed patients: a 6-month longitudinal investigation. Scand J Med Sci Sports 25:828–839PubMedCrossRefGoogle Scholar
  98. 98.
    Petersen W, Taheri P, Forkel P, Zantop T (2014) Return to play following ACL reconstruction: a systematic review about strength deficits. Arch Orthop Trauma Surg 134:1417–1428PubMedCrossRefGoogle Scholar
  99. 99.
    Swanik CB (2015) Brains and sprains: the brain’s role in noncontact anterior cruciate ligament injuries. J Athl Train 50:1100–1102PubMedCrossRefGoogle Scholar
  100. 100.
    Swanik CB, Covassin T, Stearne DJ, Schatz P (2007) The relationship between neuro-cognitive function and noncontact anterior cruciate ligament injuries. Am J Sports Med 35:943–948PubMedCrossRefGoogle Scholar
  101. 101.
    Ward S, Pearce AJ, Pietrosimone B, Bennell K, Clark R, Bryant AL (2015) Neuromuscular deficits after peripheral nerve injury: a neurophysiological hypothesis. Muscle Nerve 51:327–332PubMedCrossRefGoogle Scholar
  102. 102.
    Seidler RD (2010) Neural correlates of motor learning, transfer of learning, and learning to learn. Exerc Sport Sci Rev 38:3–9PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Courtney CA, Rine RM (2006) Central somatosensory changes associated with improved dynamic balance in subjects with anterior cruciate ligament deficiency. Gait Posture 24:190–195PubMedCrossRefGoogle Scholar
  104. 104.
    Courtney C, Rine RM, Kroll P (2005) Central somatosensory changes and altered muscle synergies in subjects with anterior cruciate ligament deficiency. Gait Posture 22:69–74PubMedCrossRefGoogle Scholar
  105. 105.
    Di Stasi S, Myer GD, Hewett TE (2013) Neuromuscular training to target deficits associated with second anterior cruciate ligament injury. J Orthop Sports Phys Ther 43:777–792PubMedCrossRefGoogle Scholar
  106. 106.
    Harkey MS, Luc-Harkey BA, Lepley AS et al (2016) Persistent muscle inhibition after ACL reconstruction: role of reflex excitability. Med Sci Sports Exerc 48:2370–2377PubMedCrossRefGoogle Scholar
  107. 107.
    Kuenze C, Blemker SS, Hart JM (2016) Quadriceps function relates to muscle size following ACL reconstruction. J Orthop Res 34:1656–1662 CrossRefGoogle Scholar
  108. 108.
    Snyder-Mackler L, Binder-Macleod SA, Williams PR (1993) Fatigability of human quadriceps femoris muscle following anterior cruciate ligament reconstruction. Med Sci Sports Exerc 25:783–789PubMedCrossRefGoogle Scholar
  109. 109.
    Stockmar C, Lill H, Trapp A, Josten C, Punkt K (2006) Fibre type related changes in the metabolic profile and fibre diameter of human vastus medialis muscle after anterior cruciate ligament rupture. Acta Histochem 108:335–342PubMedCrossRefGoogle Scholar
  110. 110.
    Beard DJ, Kyberd PJ, O’Connor JJ, Fergusson CM, Dodd CA (1994) Reflex hamstring contraction latency in anterior cruciate ligament deficiency. J Orthop Res 12:219–228PubMedCrossRefGoogle Scholar
  111. 111.
    McHugh MP, Tyler TF, Nicholas SJ, Browne MG, Gleim GW (2001) Electromyographic analysis of quadriceps fatigue after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 31:25–32PubMedCrossRefGoogle Scholar
  112. 112.
    Tsai LE, Powers CM (2013) Increased hip and knee flexion during landing decreases tibiofemoral compressive forces in women who have undergone anterior cruciate ligament reconstruction. Am J Sports Med 41:423–429PubMedCrossRefGoogle Scholar
  113. 113.
    Claes S, Verdonk P, Forsyth R, Bellemans J (2011) The “Ligamentization” process in anterior cruciate ligament reconstruction: what happens to the human graft? A systematic review of the literature. Am J Sports Med 39:2476–2483PubMedCrossRefGoogle Scholar
  114. 114.
    Adachi N, Ochi M, Takazawa K et al (2016) Morphologic evaluation of remnant anterior cruciate ligament bundles after injury with three-dimensional computed tomography. Knee Surg Sports Traumatol Arthrosc 24:148–153PubMedCrossRefGoogle Scholar
  115. 115.
    Muneta T, Koga H, Nakamura T, Horie M, Watanabe T, Sekiya I (2015) Behind-remnant arthroscopic observation and scoring of femoral attachment of injured anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 24:2906–2914PubMedCrossRefGoogle Scholar
  116. 116.
    Murray MM, Fleming BC (2013) The biology of anterior cruciate ligament injury and repair: Kappa Delta Ann Doner Vaughn Award Paper 2013. J Orthop Res 31:1501–1506PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Murray MM, Fleming BC (2013) Use of a bioactive scaffold to stimulate ACL healing also minimizes post-traumatic osteoarthritis after surgery. Am J Sports Med 41:1762–1770PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Murray MM, Spindler KP, Abreu E et al (2007) Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. J Orthop Res 25:81–91PubMedCrossRefGoogle Scholar
  119. 119.
    García-Castellano JM, Díaz-Herrera P, Morcuende JA (2000) Is bone a target-tissue for the nervous system? New advances on the understanding of their interactions. Iowa Orthop J 20:49–58PubMedPubMedCentralGoogle Scholar
  120. 120.
    Nyland J, Fisher B, Brand E, Krupp R, Caborn DN (2010) Osseous deficits after anterior cruciate ligament injury and reconstruction: a systematic literature review with suggestions to improve osseous homeostasis. Arthroscopy 26:1248–1257PubMedCrossRefGoogle Scholar
  121. 121.
    Andriolo L, Di Matteo B, Kon E, Filardo G, Venieri G, Marcacci M (2015) PRP augmentation for ACL reconstruction. BioMed Res Int. doi: 10.1155/2015/371746 PubMedPubMedCentralGoogle Scholar
  122. 122.
    Vavken P, Sadoghi P, Murray MM (2011) The effect of platelet concentrates on graft maturation and graft-bone interface healing in ACL reconstruction in human patients: a systematic review of controlled trials. Arthroscopy 27:1573–1583PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Steinert AF, Kunz M, Prager P et al (2011) Mesenchymal stem cell characteristics of human anterior cruciate ligament outgrowth cells. Tissue Eng Part A 17:1375–1388PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Farraro KF, Sasaki N, Woo SL et al (2016) A magnesium ring device to restore function of a transected anterior cruciate ligament in the goat stifle joint. J Orthop Res 34:2001–2008PubMedCrossRefGoogle Scholar
  125. 125.
    Mackay GM, Blyth MJ, Anthony I, Hopper GP, Ribbans WJ (2015) A review of ligament augmentation with the InternalBrace™: the surgical principle is described for the lateral ankle ligament and ACL repair in particular, and a comprehensive review of other surgical applications and techniques is presented. Surg Technol Int 26:239–255PubMedGoogle Scholar
  126. 126.
    Kiapour AM, Murray MM (2014) Basic science of anterior cruciate ligament repair. Bone Joint Res 3:20–31PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Lubowitz JH, MacKay G, Gilmer B (2014) Knee medial collateral ligament with posteromedial corner anatomic repair with internal bracing. Arthrosc Tech 3:e505–e508PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Achtnich A, Herbst E, Forkel P et al (2016) Acute proximal anterior cruciate ligament tears: outcomes after arthroscopic suture anchor repair versus anatomic single-bundle reconstruction. Arthroscopy 32:2562–2569PubMedCrossRefGoogle Scholar
  129. 129.
    DiFelice GS, Villegas C, Taylor S (2015) Anterior cruciate ligament preservation: early results of a novel arthroscopic technique for suture anchor primary anterior cruciate ligament repair. Arthroscopy 31:2162–2171PubMedCrossRefGoogle Scholar
  130. 130.
    Evangelopoulos DS, Kohl S, Schwienbacher S, Gantenbein B, Exadaktylos A, Ahmad SS (2015) Collagen application reduces complication rates of mid-substance ACL tears treated with dynamic intraligamentary stabilization. Knee Surg Sports Traumatol Arthrosc (Epub ahead of print) Google Scholar
  131. 131.
    Beaulieu ML, Carey GE, Schlecht SH, Wojtys EM, Ashton-Miller JA (2015) Quantitative comparison of the microscopic anatomy of the human ACL femoral and tibial entheses. J Orthop Res 33:1811–1817PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Dai C, Guo L, Yang L, Wu Y, Gou J, Li B (2015) Regional fibrocartilage variations in human anterior cruciate ligament tibial insertion: a histological three-dimensional reconstruction. Connect Tissue Res 56:18–24PubMedCrossRefGoogle Scholar
  133. 133.
    Thambyah A, Lei Z, Broom N (2014) Microanatomy of the medial collateral ligament enthesis in the bovine knee. Anat Rec (Hoboken) 297:2254–2261CrossRefGoogle Scholar
  134. 134.
    Zhao L, Thambyah A, Broom ND (2014) A multi-scale structural study of the porcine anterior cruciate ligament tibial enthesis. J Anat 224:624–633PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Gobbi A, Bathan L, Boldrini L (2009) Primary repair combined with bone marrow stimulation in acute anterior cruciate ligament lesions. Results in a group of athletes. Am J Sports Med 37:571–578PubMedCrossRefGoogle Scholar
  136. 136.
    Gribbin TC, Slater LV, Herb CC et al (2016) Differences in hip-knee joint coupling during gait after anterior cruciate ligament reconstruction. Clin Biomech (Bristol, Avon) 32:64–71CrossRefGoogle Scholar
  137. 137.
    Kiefer AW, Ford KR, Paterno MV et al (2013) TE. Inter-segmental postural coordination measures differentiate athletes with ACL reconstruction from uninjured athletes. Gait Posture 37:149–153PubMedCrossRefGoogle Scholar
  138. 138.
    Pollard CD, Stearns KM, Hayes AT, Heiderscheit BC (2015) Altered lower extremity movement variability in female soccer players during side-step cutting after anterior cruciate ligament reconstruction. Am J Sports Med 43:460–465PubMedCrossRefGoogle Scholar
  139. 139.
    Lebon F, Guillot A, Collet C (2012) Increased muscle activation following motor imagery during the rehabilitation of the anterior cruciate ligament. Appl Psychophysiol Biofeedback 37:45–51PubMedCrossRefGoogle Scholar
  140. 140.
    Fisher BE, Southam AC, Kuo YL, Lee YY, Powers CM (2016) Evidence of altered corticomotor excitability following targeted activation of gluteus maximus training in healthy individuals. Neuroreport 27:415–421PubMedCrossRefGoogle Scholar
  141. 141.
    Baumeister J, Reinecke K, Schubert M, Weiss M (2011) Altered electrocortical brain activity after ACL reconstruction during force control. J Orthop Res 29:1383–1389PubMedCrossRefGoogle Scholar
  142. 142.
    Courtney CA, Rine R, Jenk DT, Collier PD, Waters A (2013) Enhanced proprioceptive acuity at the knee in the competitive athlete. J Orthop Sports Phys Ther 43:422–426PubMedCrossRefGoogle Scholar
  143. 143.
    Raunest J, Sager M, Burgener E (1996) Proprioceptive mechanisms in the cruciate ligaments: an electromyographic study on reflex activity in the thigh muscles. J Trauma 41:488–493PubMedCrossRefGoogle Scholar
  144. 144.
    Reich TE, Lindstedt SL, LaStayo PC, Pierotti DJ (2000) Is the spring quality of muscle plastic? Am J Physiol Regul Integr Comp Physiol 278:R1661–R1666PubMedGoogle Scholar
  145. 145.
    Valeriani M, Restuccia D, Di Lazzaro V, Franceschi F, Fabbriciani C, Tonali P (1996) Central nervous system modifications in patients with lesion of the anterior cruciate ligament of the knee. Brain 119:1751–1762PubMedCrossRefGoogle Scholar
  146. 146.
    Valeriani M, Restuccia D, Di Lazzaro V, Franceschi F, Fabbriciani C, Tonali P (1999) Clinical and neurophysiological abnormalities before and after reconstruction of the anterior cruciate ligament of the knee. Acta Neurol Scand 99:303–307PubMedCrossRefGoogle Scholar
  147. 147.
    Fremerey R, Freitag N, Wippermann B, Stalp M, Fu FH (2006) Sensorimotor potential of the intact and injured anterior and posterior cruciate ligaments—a neurophysiological study in an animal model. Z Orthop Ihre Grenzgeb 144:158–163PubMedCrossRefGoogle Scholar
  148. 148.
    Dyhre-Poulsen P, Krogsgaard MR (2000) Muscular reflexes elicited by electrical stimulation of the anterior cruciate ligament in humans. J Appl Physiol 89:2191–2195PubMedGoogle Scholar
  149. 149.
    Krogsgaard MR, Fischer-Rasmussen T, Dyhre-Poulsen P (2011) Absence of sensory function in the reconstructed anterior cruciate ligament. J Electromyogr Kinesiol 21:82–86PubMedCrossRefGoogle Scholar
  150. 150.
    Tsuda E, Ishibashi Y, Okamura Y, Toh S (2003) Restoration of anterior cruciate ligament-hamstring reflex arc after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 11:63–67PubMedCrossRefGoogle Scholar
  151. 151.
    Tsuda E, Okamura Y, Otsuka H, Komatsu T, Tokuya S (2001) Direct evidence of the anterior cruciate ligament-hamstring reflex arc in humans. Am J Sports Med 29:83–87PubMedGoogle Scholar
  152. 152.
    Bonsfills N, Gomez-Barrena E, Raygoza JJ, Nunez A (2008) Loss of neuromuscular control related to motion in the acutely ACL-injured knee: an experimental study. Eur J Appl Physiol 104:567–577PubMedCrossRefGoogle Scholar
  153. 153.
    Friemert B, Faist M, Spengler C, Gerngross H, Claes L, Melnyk M (2005) Intraoperative direct mechanical stimulation of the anterior cruciate ligament elicits short- and medium-latency hamstring reflexes. J Neurophysiol 94:3996–4001PubMedCrossRefGoogle Scholar
  154. 154.
    Iwasa J, Ochi M, Uchio Y, Adachi N, Kawasaki K (2006) Decrease in anterior knee laxity by electrical stimulation of normal and reconstructed anterior cruciate ligaments. J Bone Joint Surg Br 88:477–483PubMedCrossRefGoogle Scholar
  155. 155.
    Ristanis S, Tsepis E, Giotis D, Stergiou N, Cerulli G, Georgoulis AD (2009) Electro-mechanical delay of the knee flexor muscles is impaired after harvesting hamstring tendons for anterior cruciate ligament reconstruction. Am J Sports Med 37:2179–2186PubMedCrossRefGoogle Scholar
  156. 156.
    Krogsgaard MR, Dyhre-Poulsen P, Fischer-Rasmussen T (2002) Cruciate ligament reflexes. J Electromyogr Kinesiol 12:177–182PubMedCrossRefGoogle Scholar
  157. 157.
    Chmielewski TL, Hurd WJ, Rudolph KS, Axe MJ, Snyder-Mackler L (2005) Perturbation training improves knee kinematics and reduces muscle co-contraction after complete unilateral anterior cruciate ligament rupture. Phys Ther 85:740–749PubMedGoogle Scholar
  158. 158.
    Pietrosimone BG, Lepley AS, Ericksen HM, Clements A, Sohn DH, Gribble PA (2015) Neural excitability alterations after anterior cruciate ligament reconstruction. J Athl Train 50:665–674PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Ward SH, Pearce A, Bennell KL, Peitrosimone B, Bryant AL (2016) Quadriceps cortical adaptations in individuals with an anterior cruciate ligament injury. Knee 23:582–587PubMedCrossRefGoogle Scholar
  160. 160.
    Hurd WJ, Axe MJ, Snyder-Mackler L (2008) Influence of age, gender, and injury mechanism on the development of dynamic knee stability after acute ACL rupture. J Orthop Sports Phys Ther 38:36–41PubMedCrossRefGoogle Scholar
  161. 161.
    Bali K, Dhillon MS, Vasistha RK, Kakkar N, Chana R, Prabhakar S (2012) Efficacy of immuno histological methods in detecting functionally viable mechanoreceptors in the remnant stumps of injured anterior cruciate ligaments and its clinical importance. Knee Surg Sports Traumatol Arthrosc 20:75–80PubMedCrossRefGoogle Scholar
  162. 162.
    Angelozzi M, Madama M, Corsica C et al (2012) Rate of force development as an adjunctive outcome measure for return-to-sport decisions after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 42:772–780PubMedCrossRefGoogle Scholar
  163. 163.
    Louw Q, Gillion N, van Niekerk SM, Morris L, Baumeister J (2015) The effect of vision on knee biomechanics during functional activities—a systematic review. J Sci Med Sport 18:469–474PubMedCrossRefGoogle Scholar
  164. 164.
    Pamukoff DN, Pietrosimone B, Lewek MD et al (2016) Whole-body and local muscle vibration immediately improve quadriceps function in individuals with anterior cruciate ligament reconstruction. Arch Phys Med Rehabil 97:1121–1129PubMedCrossRefGoogle Scholar
  165. 165.
    Leventer L, Dicks M, Duarte R, Davids K, Araujo D (2015) Emergence of contact injuries in invasion team sports: an ecological dynamics rationale. Sports Med 45:153–159PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2017

Authors and Affiliations

  • John Nyland
    • 1
    Email author
  • Collin Gamble
    • 2
  • Tiffany Franklin
    • 1
  • David N. M. Caborn
    • 3
  1. 1.Athletic Training Program Director and Professor, Kosair Charities College of Health and Natural SciencesSpalding UniversityLouisvilleUSA
  2. 2.School of MedicineUniversity of LouisvilleLouisvilleUSA
  3. 3.Shea Orthopedic GroupKentuckyOne HealthLouisvilleUSA

Personalised recommendations