The interaction between the vastus medialis and vastus intermedius and its influence on the extensor apparatus of the knee joint

  • Karl GrobEmail author
  • Mirjana Manestar
  • Luis Filgueira
  • Markus S. Kuster
  • Helen Gilbey
  • Timothy Ackland



Although the vastus medialis (VM) is closely associated with the vastus intermedius (VI), there is a lack of data regarding their functional relationship. The purpose of this study was to investigate the anatomical interaction between the VM and VI with regard to their origins, insertions, innervation and function within the extensor apparatus of the knee joint.


Eighteen human cadaveric lower limbs were investigated using macro-dissection techniques. Six limbs were cut transversely in the middle third of the thigh. The mode of origin, insertion and nerve supply of the extensor apparatus of the knee joint were studied. The architecture of the VM and VI was examined in detail, as was their anatomical interaction and connective tissue linkage to the adjacent anatomical structures.


The VM originated medially from a broad hammock-like structure. The attachment site of the VM always spanned over a long distance between: (1) patella, (2) rectus femoris tendon and (3) aponeurosis of the VI, with the insertion into the VI being the largest. VM units were inserted twice—once on the anterior and once on the posterior side of the VI. The VI consists of a complex multi-layered structure. The layers of the medial VI aponeurosis fused with the aponeuroses of the tensor vastus intermedius and vastus lateralis. Together, they form the two-layered intermediate layer of the quadriceps tendon. The VM and medial parts of the VI were innervated by the same medial division of the femoral nerve.


The VM consists of multiple muscle units inserting into the entire VI. Together, they build a potential functional muscular complex. Therefore, the VM acts as an indirect extensor of the knee joint regulating and adjusting the length of the extensor apparatus throughout the entire range of motion. It is of clinical importance that, besides the VM, substantial parts of the VI directly contribute to the medial pull on the patella and help to maintain medial tracking of the patella during knee extension. The interaction between the VM and VI, with responsibility for the extension of the knee joint and influence on the patellofemoral function, leads readily to an understanding of common clinical problems found at the knee joint as it attempts to meet contradictory demands for both mobility and stability. Surgery or trauma in the anteromedial aspect of the quadriceps muscle group might alter a delicate interplay between the VM and VI. This would affect the extensor apparatus as a whole.


Vastus medialis Vastus intermedius Extensor apparatus of the knee joint Quadriceps muscle group Extensor mechanism of the knee joint 


Authors’ contribution

Grob K (GK), Manestar M (MM), Filgueira L (FL), Kuster MS (KMS), Gilbey H (GH), Ackland T (AT). GK carried out the anatomical dissections and took the photographs. GK drafted the manuscript. MM and FL participated in the design of the study and the anatomical dissections. MM and KMS also participated in the literature research. GH has been involved first in the drafting the manuscript and second in the revision process. AT and KMS gave the final approval of the version to be published. All authors were involved in the interpretation of the results of the anatomical dissections.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.



Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

In this article, no patient care was involved.

Supplementary material

(Video clip added): Supplementary material 1 (MP4 32673 kb)


  1. 1.
    Blazevich AJ, Gill ND, Zhou S (2006) Intra- and intermuscular variation in human quadriceps femoris architecture assessed in vivo. J Anat 209:289–310CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Blemker SS, Delp SL (2006) Rectus femoris and vastus intermedius fiber excursions predicted by three-dimensional muscle models. J Biomech 39:1383–1391CrossRefPubMedGoogle Scholar
  3. 3.
    Bose K, Kanagasuntheram R, Osman MB (1980) Vastus medialis oblique: an anatomic and physiologic study. Orthopedics 3:880–883PubMedGoogle Scholar
  4. 4.
    Bryce TH (1923) Myology. In: Quain’s elements of anatomy, 11th ed. vol 4. pp 236–241Google Scholar
  5. 5.
    Cutts A (1988) Shrinkage of muscle fibres during the fixation of cadaveric tissue. J Anat 160:75–78PubMedPubMedCentralGoogle Scholar
  6. 6.
    Engstrom CM, Loeb GE, Reid JG, Forrest WJ, Avruch L (1991) Morphometry of the human thigh muscles. A comparison between anatomical sections and computer tomographic and magnetic resonance images. J Anat 176:139–156PubMedPubMedCentralGoogle Scholar
  7. 7.
    Erdemir A, McLean S, Herzog W, van den Bogert AJ (2007) Model-based estimation of muscle forces exerted during movements. Clin Biomech (Bristol, Avon) 22:131–154CrossRefGoogle Scholar
  8. 8.
    Friederich JA, Brand RA (1990) Muscle fiber architecture in the human lower limb. J Biomech 23:91–95CrossRefPubMedGoogle Scholar
  9. 9.
    Gegenbaur C (1899) Lehrbuch der Anatomie des Menschen. Verlag von Wilhelm Engelmann, Leibzig, p 449Google Scholar
  10. 10.
    Grob K, Ackland T, Kuster M, Manestar M, Filgueira L (2016) A newly discovered muscle: the tensor of the vastus intermedius. Clin Anat 29:256–263CrossRefPubMedGoogle Scholar
  11. 11.
    Grob K, Manestar M, Filgueira L, Ackland T, Gilbey H, Kuster MS (2016) New insight in the architecture of the quadriceps tendon. J Exp Orthop 3:32CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Grob K, Monahan R, Gilbey H, Ackland T, Kuster MS (2015) Limitations of the vastus lateralis muscle as a substitute for lost abductor muscle function: an anatomical study. J Arthroplasty 30:2338–2342CrossRefPubMedGoogle Scholar
  13. 13.
    Grob K, Monahan R, Gilbey H, Yap F, Filgueira L, Kuster M (2015) Distal extension of the direct anterior approach to the hip poses risk to neurovascular structures: an anatomical study. J Bone Joint Surg Am 97:126–132CrossRefPubMedGoogle Scholar
  14. 14.
    Günal I, Araç S, Sahinoğlu K, Birvar K (1992) The innervation of vastus medialis obliquus. J Bone Joint Surg Br 74:624CrossRefPubMedGoogle Scholar
  15. 15.
    Hallén LG, Lindahl O (1967) Muscle function in knee extension. An EMG study. Acta Orthop Scand 38:434–444CrossRefPubMedGoogle Scholar
  16. 16.
    Henle J (1855) Handbuch der Systematischen Anatomie des Menschen. In drei Bänden, Erster Band. Erste Abteilung. Knochenlehre. Braunschweig, Druck und Verlag von Friedrich Vieweg und Sohn. 255–260Google Scholar
  17. 17.
    Hollinshead W, Rosse C (1985) Textbook of anatomy. Harper (ed) PhiladelphiaGoogle Scholar
  18. 18.
    Holmes SW, Clancy WG (1998) Clinical classification of patellofemoral pain and dysfunction. J Orthop Sports Phys Ther 28:299–306CrossRefPubMedGoogle Scholar
  19. 19.
    Hubbard JK, Sampson HW, Elledge JR (1997) Prevalence and morphology of the vastus medialis oblique muscle in human cadavers. Anat Rec 249:135–142CrossRefPubMedGoogle Scholar
  20. 20.
    Huijing PA (2009) Epimuscular myofascial force transmission: a historical review and implications for new research. International society of biomechanics muybridge award lecture, Taipei, 2007. J Biomech 42:9–21CrossRefPubMedGoogle Scholar
  21. 21.
    Hyong IH, Kang JH (2013) Activities of the vastus lateralis and vastus medialis oblique muscles during squats on different surfaces. J Phys Ther Sci 25:915–917CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Klein Horsman MD, Koopman HFJM, van der Helm FCT, Prosé LP, Veeger HEJ (2007) Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin Biomech (Bristol, Avon) 22:239–247CrossRefGoogle Scholar
  23. 23.
    LT (1893) D’Anatomie humaine. In: Doin O (ed) Traité, Paris, pp 170–175Google Scholar
  24. 24.
    Last RJ (1952) On the form and structure of muscles. J Bone Joint Surg Br 34–B:295–305CrossRefPubMedGoogle Scholar
  25. 25.
    Lefebvre R, Leroux A, Poumarat G, Galtier B, Guillot M, Vanneuville G, Boucher JP (2006) Vastus medialis: anatomical and functional considerations and implications based upon human and cadaveric studies. J Manip Physiol Ther 29:139–144CrossRefGoogle Scholar
  26. 26.
    Lieb FJ, Perry J (1968) Quadriceps function. An anatomical and mechanical study using amputated limbs. J Bone Joint Surg Am 50:1535–1548CrossRefPubMedGoogle Scholar
  27. 27.
    Lieb FJ, Perry J (1971) Quadriceps function. An electromyographic study under isometric conditions. J Bone Joint Surg Am 53:749–758CrossRefPubMedGoogle Scholar
  28. 28.
    Lin Y-F, Lin J-J, Jan M-H, Wei T-C, Shih H-Y, Cheng C-K (2008) Role of the vastus medialis obliquus in repositioning the patella: a dynamic computed tomography study. Am J Sports Med 36:741–746CrossRefPubMedGoogle Scholar
  29. 29.
    Maas H, Sandercock TG (2010) Force transmission between synergistic skeletal muscles through connective tissue linkages. J Biomed Biotechnol 2010:575672CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Malone T, Davies G, Walsh WM (2002) Muscular control of the patella. Clin Sports Med 21:349–362CrossRefPubMedGoogle Scholar
  31. 31.
    McConnell J (2002) The physical therapist’s approach to patellofemoral disorders. Clin Sports Med 21:363–387CrossRefPubMedGoogle Scholar
  32. 32.
    Mochizuki T, Nimura A, Tateishi T, Yamaguchi K, Muneta T, Akita K (2013) Anatomic study of the attachment of the medial patellofemoral ligament and its characteristic relationships to the vastus intermedius. Knee Surg Sports Traumatol Arthrosc 21:305–310CrossRefPubMedGoogle Scholar
  33. 33.
    Nozic M, Mitchell J, de Klerk D (1997) A comparison of the proximal and distal parts of the vastus medialis muscle. Aust J Physiother 43:277–281CrossRefPubMedGoogle Scholar
  34. 34.
    Panagiotopoulos E, Strzelczyk P, Herrmann M, Scuderi G (2006) Cadaveric study on static medial patellar stabilizers: the dynamizing role of the vastus medialis obliquus on medial patellofemoral ligament. Knee Surg Sports Traumatol Arthrosc 14:7–12CrossRefPubMedGoogle Scholar
  35. 35.
    Pandy MG (2001) Computer modeling and simulation of human movement. Annu Rev Biomed Eng 3:245–273CrossRefPubMedGoogle Scholar
  36. 36.
    Pasta G, Nanni G, Molini L, Bianchi S (2010) Sonography of the quadriceps muscle: examination technique, normal anatomy, and traumatic lesions. J Ultrasound 13:76–84CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Peeler J, Cooper J, Porter MM, Thliveris JA, Anderson JE (2005) Structural parameters of the vastus medialis muscle. Clin Anat 18:281–289CrossRefPubMedGoogle Scholar
  38. 38.
    Placella G, Tei MM, Sebastiani E, Criscenti G, Speziali A, Mazzola C, Georgoulis A, Cerulli G (2014) Shape and size of the medial patellofemoral ligament for the best surgical reconstruction: a human cadaveric study. Knee Surg Sports Traumatol Arthrosc 22:2327–2333CrossRefPubMedGoogle Scholar
  39. 39.
    Platzer W (2013) Taschenatlas anatomie. Bewegungsapparat. 11th ed. Thieme, Stuttgart, New York. pp 248–249Google Scholar
  40. 40.
    Pocock GS (1963) Electromyographic study of the quadriceps during resistive exercise. J Am Phys Ther Assoc 43:427–434PubMedGoogle Scholar
  41. 41.
    Putz R, Papst R (2011) Sobotta atlas of human anatomy. In: Elsvier/Urban & Fischer (ed). 15th ed. Munich. pp 302–304Google Scholar
  42. 42.
    Reider B, Marshall JL, Koslin B, Ring B, Girgis FG (1981) The anterior aspect of the knee joint. J Bone Joint Surg Am 63:351–356CrossRefPubMedGoogle Scholar
  43. 43.
    Drake RL, Vogl AW (2015) Gray’s Anatomy for students. 3rd ed. Churchill Livingstone Elsevier pp 592–594Google Scholar
  44. 44.
    Sakai N, Luo ZP, Rand JA, An KN (2000) The influence of weakness in the vastus medialis oblique muscle on the patellofemoral joint: an in vitro biomechanical study. Clin Biomech (Bristol, Avon) 15:335–339CrossRefGoogle Scholar
  45. 45.
    Schünke M, Schulte E, Schuhmacher U (2011) Prometheus LernAtlas der Anatomie: Allgemeine Anatomie und Bewegungssystem. Thieme, StuttgartGoogle Scholar
  46. 46.
    Schünke M, Schulte E, Schumacher U (2011) In: Schünke M (ed) Prometeus Lernatlas der Anatomie: Allgemeine Anatomie und Bewegungssystem. Georg Thieme Verlag, StuttgartGoogle Scholar
  47. 47.
    Shelburne KB, Pandy MG (1997) A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions. J Biomech 30:163–176CrossRefPubMedGoogle Scholar
  48. 48.
    Skinner EJ, Adds PJ (2012) Vastus medialis: a reappraisal of VMO and VML. J Phys Ther Sci 24:475–479CrossRefGoogle Scholar
  49. 49.
    Smith TO, Bowyer D, Dixon J, Stephenson R, Chester R, Donell ST (2009) Can vastus medialis oblique be preferentially activated? A systematic review of electromyographic studies. Physiother Theory Pract 25:69–98CrossRefPubMedGoogle Scholar
  50. 50.
    Smith TO, Nichols R, Harle D, Donell ST (2009) Do the vastus medialis obliquus and vastus medialis longus really exist? A systematic review. Clin Anat 22:183–199CrossRefPubMedGoogle Scholar
  51. 51.
    Speakman HG, Weisberg J (1977) The vastus medialis controversy. Physiotherapy 63:249–254PubMedGoogle Scholar
  52. 52.
    Thiranagama R (1990) Nerve supply of the human vastus medialis muscle. J Anat 170:193–198PubMedPubMedCentralGoogle Scholar
  53. 53.
    Toumi H, Poumarat G, Benjamin M, Best TM, Best T, F’Guyer S, Fairclough J (2007) New insights into the function of the vastus medialis with clinical implications. Med Sci Sports Exerc 39:1153–1159CrossRefPubMedGoogle Scholar
  54. 54.
    Weinstabl R, Scharf W, Firbas W (1989) The extensor apparatus of the knee joint and its peripheral vasti: anatomic investigation and clinical relevance. Surg Radiol Anat 11:17–22CrossRefPubMedGoogle Scholar
  55. 55.
    Willan PL, Mahon M, Golland JA (1990) Morphological variations of the human vastus lateralis muscle. J Anat 168:235–239PubMedPubMedCentralGoogle Scholar
  56. 56.
    Willan PLT, Ransome JA, Mahon M (2002) Variability in human quadriceps muscles: quantitative study and review of clinical literature. Clin Anat 15:116–128CrossRefPubMedGoogle Scholar
  57. 57.
    Yucesoy CA, Baan GC, Koopman BHFJM, Grootenboer HJ, Huijing PA (2005) Pre-strained epimuscular connections cause muscular myofascial force transmission to affect properties of synergistic EHL and EDL muscles of the rat. J Biomech Eng 127:819–828CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2017

Authors and Affiliations

  • Karl Grob
    • 1
    Email author
  • Mirjana Manestar
    • 2
  • Luis Filgueira
    • 3
  • Markus S. Kuster
    • 4
  • Helen Gilbey
    • 5
  • Timothy Ackland
    • 4
  1. 1.Department of Orthopaedic SurgeryKantonsspital St. GallenSt. GallenSwitzerland
  2. 2.Department of AnatomyUniversity of Zürich-IrchelZurichSwitzerland
  3. 3.Department of AnatomyUniversity of FribourgFribourgSwitzerland
  4. 4.The University of Western AustraliaCrawley, PerthAustralia
  5. 5.Hollywood Functional Rehabilitation ClinicPerthAustralia

Personalised recommendations