Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 24, Issue 11, pp 3482–3495 | Cite as

Current state of computer navigation and robotics in unicompartmental and total knee arthroplasty: a systematic review with meta-analysis

  • Jelle P. van der ListEmail author
  • Harshvardhan Chawla
  • Leo Joskowicz
  • Andrew D. Pearle
Knee

Abstract

Recently, there is a growing interest in surgical variables that are intraoperatively controlled by orthopaedic surgeons, including lower leg alignment, component positioning and soft tissues balancing. Since more tight control over these factors is associated with improved outcomes of unicompartmental knee arthroplasty and total knee arthroplasty (TKA), several computer navigation and robotic-assisted systems have been developed. Although mechanical axis accuracy and component positioning have been shown to improve with computer navigation, no superiority in functional outcomes has yet been shown. This could be explained by the fact that many differences exist between the number and type of surgical variables these systems control. Most systems control lower leg alignment and component positioning, while some in addition control soft tissue balancing. Finally, robotic-assisted systems have the additional advantage of improving surgical precision. A systematic search in PubMed, Embase and Cochrane Library resulted in 40 comparative studies and three registries on computer navigation reporting outcomes of 474,197 patients, and 21 basic science and clinical studies on robotic-assisted knee arthroplasty. Twenty-eight of these comparative computer navigation studies reported Knee Society Total scores in 3504 patients. Stratifying by type of surgical variables, no significant differences were noted in outcomes between surgery with computer-navigated TKA controlling for alignment and component positioning versus conventional TKA (p = 0.63). However, significantly better outcomes were noted following computer-navigated TKA that also controlled for soft tissue balancing versus conventional TKA (mean difference 4.84, 95 % Confidence Interval 1.61, 8.07, p = 0.003). A literature review of robotic systems showed that these systems can, similarly to computer navigation, reliably improve lower leg alignment, component positioning and soft tissues balancing. Furthermore, two studies comparing robotic-assisted with computer-navigated surgery reported superiority of robotic-assisted surgery in controlling these factors. Manually controlling all these surgical variables can be difficult for the orthopaedic surgeon. Findings in this study suggest that computer navigation or robotic assistance may help managing these multiple variables and could improve outcomes. Future studies assessing the role of soft tissue balancing in knee arthroplasty and long-term follow-up studies assessing the role of computer-navigated and robotic-assisted knee arthroplasty are needed.

Keywords

Computer navigation Robotics Unicompartmental knee arthroplasty Total knee arthroplasty Soft tissue balancing 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Funding

No funding has been received for this study.

Ethical approval

Ethical approval was not obtained because this study was a literature review.

Informed consent

Informed consent was not obtained because this study was a literature review.

References

  1. 1.
    Alcelik IA, Blomfield MI, Diana G, Gibbon AJ, Carrington N, Burr S (2016) A comparison of short-term outcomes of minimally invasive computer-assisted vs minimally invasive conventional instrumentation for primary total knee arthroplasty: a systematic review and meta-analysis. J Arthroplasty 31(2):410–418PubMedCrossRefGoogle Scholar
  2. 2.
    Annual Report 2014 Australian Hip and Knee Arthroplasty Register (2014). https://aoanjrr.dmac.adelaide.edu.au/documents/10180/172286/AnnualReport2014. Accessed 20 Aug 2016
  3. 3.
    Annual Report 2015 Swedish Knee Arthroplasty Register (2015). http://www.myknee.se/pdf/SVK_2015_Eng_1.0.pdf. Accessed 20 Aug 2016
  4. 4.
    Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S, Guyatt GH, Harbour RT, Haugh MC, Henry D, Hill S, Jaeschke R, Leng G, Liberati A, Magrini N, Mason J, Middleton P, Mrukowicz J, O’Connell D, Oxman AD, Phillips B, Schunemann HJ, Edejer T, Varonen H, Vist GE, Williams JW Jr, Zaza S (2004) Grading quality of evidence and strength of recommendations. BMJ 328(7454):1490PubMedCrossRefGoogle Scholar
  5. 5.
    Attfield SF, Wilton TJ, Pratt DJ, Sambatakakis A (1996) Soft-tissue balance and recovery of proprioception after total knee replacement. J Bone Joint Surg Br 78(4):540–545PubMedGoogle Scholar
  6. 6.
    Babazadeh S, Stoney JD, Lim K, Choong PF (2009) The relevance of ligament balancing in total knee arthroplasty: how important is it? A systematic review of the literature. Orthop Rev (Pavia) 1(2):e26CrossRefGoogle Scholar
  7. 7.
    Barbadoro P, Ensini A, Leardini A, d’Amato M, Feliciangeli A, Timoncini A, Amadei F, Belvedere C, Giannini S (2014) Tibial component alignment and risk of loosening in unicompartmental knee arthroplasty: a radiographic and radiostereometric study. Knee Surg Sports Traumatol Arthrosc 22(12):3157–3162PubMedCrossRefGoogle Scholar
  8. 8.
    Barink M, Verdonschot N, de Waal Malefijt M (2003) A different fixation of the femoral component in total knee arthroplasty may lead to preservation of femoral bone stock. Proc Inst Mech Eng H 217(5):325–332PubMedCrossRefGoogle Scholar
  9. 9.
    Barrett WP, Mason JB, Moskal JT, Dalury DF, Oliashirazi A, Fisher DA (2011) Comparison of radiographic alignment of imageless computer-assisted surgery vs conventional instrumentation in primary total knee arthroplasty. J Arthroplasty 26(8):1273–1284PubMedCrossRefGoogle Scholar
  10. 10.
    Bauwens K, Matthes G, Wich M, Gebhard F, Hanson B, Ekkernkamp A, Stengel D (2007) Navigated total knee replacement: a meta-analysis. J Bone Joint Surg Am 89(2):261–269PubMedGoogle Scholar
  11. 11.
    Bellemans J, Vandenneucker H, Vanlauwe J (2007) Robot-assisted total knee arthroplasty. Clin Orthop Relat Res 464:111–116PubMedGoogle Scholar
  12. 12.
    Bin Abd Razak HR, Yeo Jin S, Chong Chi H (2014) Computer navigation results in less severe flexion contracture following total knee arthroplasty. J Arthroplasty 29(12):2369–2372PubMedCrossRefGoogle Scholar
  13. 13.
    Bonnin MP, Saffarini M, Shepherd D, Bossard N, Dantony E (2015) Oversizing the tibial component in TKAs: incidence, consequences and risk factors. Knee Surg Sports Traumatol Arthrosc 24(8):2532–2540PubMedCrossRefGoogle Scholar
  14. 14.
    Bonnin MP, Schmidt A, Basiglini L, Bossard N, Dantony E (2013) Mediolateral oversizing influences pain, function, and flexion after TKA. Knee Surg Sports Traumatol Arthrosc 21(10):2314–2324PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bonutti PM, Dethmers D, Ulrich SD, Seyler TM, Mont MA (2008) Computer navigation-assisted versus minimally invasive TKA: benefits and drawbacks. Clin Orthop Relat Res 466(11):2756–2762PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Borenstein M, Hedges LV, Higgins J, Rothstein HR (2009) Introduction to meta-analysis. Wiley, ChichesterCrossRefGoogle Scholar
  17. 17.
    Brin YS, Nikolaou VS, Joseph L, Zukor DJ, Antoniou J (2011) Imageless computer assisted versus conventional total knee replacement. A Bayesian meta-analysis of 23 comparative studies. Int Orthop 35(3):331–339PubMedCrossRefGoogle Scholar
  18. 18.
    Burnett RS, Nair R, Hall CA, Jacks DA, Pugh L, McAllister MM (2014) Results of the Oxford Phase 3 mobile bearing medial unicompartmental knee arthroplasty from an independent center: 467 knees at a mean 6-year follow-up: analysis of predictors of failure. J Arthroplasty 29(9 Suppl):193–200PubMedCrossRefGoogle Scholar
  19. 19.
    Centre of excellence of joint replacements (2010) The Norwegian arthroplasty registerGoogle Scholar
  20. 20.
    Chau R, Gulati A, Pandit H, Beard DJ, Price AJ, Dodd CA, Gill HS, Murray DW (2009) Tibial component overhang following unicompartmental knee replacement–does it matter? Knee 16(5):310–313PubMedCrossRefGoogle Scholar
  21. 21.
    Cheng T, Pan XY, Mao X, Zhang GY, Zhang XL (2012) Little clinical advantage of computer-assisted navigation over conventional instrumentation in primary total knee arthroplasty at early follow-up. Knee 19(4):237–245PubMedCrossRefGoogle Scholar
  22. 22.
    Cheng T, Zhang G, Zhang X (2011) Imageless navigation system does not improve component rotational alignment in total knee arthroplasty. J Orthop Surg Res 171(2):590–600Google Scholar
  23. 23.
    Cheng T, Zhao S, Peng X, Zhang X (2012) Does computer-assisted surgery improve postoperative leg alignment and implant positioning following total knee arthroplasty? A meta-analysis of randomized controlled trials? Knee Surg Sports Traumatol Arthrosc 20(7):1307–1322PubMedCrossRefGoogle Scholar
  24. 24.
    Cip J, Widemschek M, Luegmair M, Sheinkop MB, Benesch T, Martin A (2014) Conventional versus computer-assisted technique for total knee arthroplasty: a minimum of 5-year follow-up of 200 patients in a prospective randomized comparative trial. J Arthroplasty 29(9):1795–1802PubMedCrossRefGoogle Scholar
  25. 25.
    Citak M, Suero EM, Citak M, Dunbar NJ, Branch SH, Conditt MA, Banks SA, Pearle AD (2013) Unicompartmental knee arthroplasty: is robotic technology more accurate than conventional technique? Knee 20(4):268–271PubMedCrossRefGoogle Scholar
  26. 26.
    Clark TC, Schmidt FH (2013) Robot-assisted navigation versus computer-assisted navigation in primary total knee arthroplasty: efficiency and accuracy. ISRN Orthop 2013:794827PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Cobb J, Henckel J, Gomes P, Harris S, Jakopec M, Rodriguez F, Barrett A, Davies B (2006) Hands-on robotic unicompartmental knee replacement: a prospective, randomised controlled study of the acrobot system. J Bone Joint Surg Br 88(2):188–197PubMedCrossRefGoogle Scholar
  28. 28.
    Collier MB, Eickmann TH, Sukezaki F, McAuley JP, Engh GA (2006) Patient, implant, and alignment factors associated with revision of medial compartment unicondylar arthroplasty. J Arthroplasty 21(6 Suppl 2):108–115PubMedCrossRefGoogle Scholar
  29. 29.
    Conteduca F, Iorio R, Mazza D, Ferretti A (2014) Patient-specific instruments in total knee arthroplasty. Int Orthop 38(2):259–265PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Coon T, Roche M, Pearle AD, Dounchis J, Borus T, Buechel Jr F (2013) Two year survivorship of robotically guided unicompartmental knee arthroplasty. Paper presented at the ISTA 26th annual congress, Palm Beach, FL, USAGoogle Scholar
  31. 31.
    De Steiger RN, Liu YL, Graves SE (2015) Computer navigation for total knee arthroplasty reduces revision rate for patients less than sixty-five years of age. J Bone Joint Surg Am 97(8):635–642PubMedCrossRefGoogle Scholar
  32. 32.
    Decking R, Markmann Y, Mattes T, Puhl W, Scharf HP (2007) On the outcome of computer-assisted total knee replacement. Acta Chir Orthop Traumatol Cech 74(3):171–174PubMedGoogle Scholar
  33. 33.
    Dobzyniak M, Fehring TK, Odum S (2006) Early failure in total hip arthroplasty. Clin Orthop Relat Res 447:76–78PubMedCrossRefGoogle Scholar
  34. 34.
    Dunbar NJ, Roche MW, Park BH, Branch SH, Conditt MA, Banks SA (2012) Accuracy of dynamic tactile-guided unicompartmental knee arthroplasty. J Arthroplasty 27(5):803–808PubMedCrossRefGoogle Scholar
  35. 35.
    Eagar P, Hull ML, Howell SM (2004) How the fixation method stiffness and initial tension affect anterior load-displacement of the knee and tension in anterior cruciate ligament grafts: a study in cadaveric knees using a double-loop hamstrings graft. J Orthop Res 22(3):613–624PubMedCrossRefGoogle Scholar
  36. 36.
    Ek ET, Dowsey MM, Tse LF, Riazi A, Love BR, Stoney JD, Choong PF (2008) Comparison of functional and radiological outcomes after computer-assisted versus conventional total knee arthroplasty: a matched-control retrospective study. J Orthop Surg (Hong Kong) 16(2):192–196CrossRefGoogle Scholar
  37. 37.
    Fehring TK, Odum S, Griffin WL, Mason JB, Nadaud M (2001) Early failures in total knee arthroplasty. Clin Orthop Relat Res 392:315–318CrossRefGoogle Scholar
  38. 38.
    Fricka KB, Sritulanondha S, McAsey CJ (2015) To cement or not? Two-year results of a prospective, randomized study comparing cemented vs. cementless total knee arthroplasty (TKA). J Arthroplasty 30(9 Suppl):55–58PubMedCrossRefGoogle Scholar
  39. 39.
    Fu Y, Wang M, Liu Y, Fu Q (2012) Alignment outcomes in navigated total knee arthroplasty: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 20(6):1075–1082PubMedCrossRefGoogle Scholar
  40. 40.
    Gioe TJ, Killeen KK, Grimm K, Mehle K, Scheltema K (2004) Why are total knee replacements revised? Clin Orthop Relat Res 428:100–106CrossRefGoogle Scholar
  41. 41.
    Gøthesen O, Espehaug B, Havelin L, Petursson G, Furnes O (2011) Short-term outcome of 1,465 computer-navigated primary total knee replacements 2005–2008. Acta Orthop 82(3):293–300PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Hansen DC, Kusuma SK, Palmer RM, Harris KB (2014) Robotic guidance does not improve component position or short-term outcome in medial unicompartmental knee arthroplasty. J Arthroplasty 29(9):1784–1789PubMedCrossRefGoogle Scholar
  43. 43.
    Harvie P, Sloan K, Beaver RJ (2012) Computer navigation vs conventional total knee arthroplasty. Five-year functional results of a prospective randomized trial. J Arthroplasty 27(5):667–672PubMedCrossRefGoogle Scholar
  44. 44.
    Hasegawa M, Yoshida K, Wakabayashi H, Sudo A (2011) Minimally invasive total knee arthroplasty: comparison of jig-based technique versus computer navigation for clinical and alignment outcome. Knee Surg Sports Traumatol Arthrosc 19(6):904–910PubMedCrossRefGoogle Scholar
  45. 45.
    Hernández-Vaquero D, Suarez-Vazquez A, Iglesias-Fernandez S (2011) Can computer assistance improve the clinical and functional scores in total knee arthroplasty? Clin Orthop Relat Res 469(12):3436–3442PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Hetaimish BM, Khan MM, Simunovic N, Al-Harbi HH, Bhandari M, Zalzal PK (2012) Meta-analysis of navigation vs conventional total knee arthroplasty. J Arthroplasty 27(6):1177–1182PubMedCrossRefGoogle Scholar
  47. 47.
    Hoppe S, Mainzer JD, Frauchiger L, Ballmer PM, Hess R, Zumstein MA (2012) More accurate component alignment in navigated total knee arthroplasty has no clinical benefit at 5-year follow-up. Acta Orthop 83(6):629–633PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Huang NF, Dowsey MM, Ee E, Stoney JD, Babazadeh S, Choong PF (2012) Coronal alignment correlates with outcome after total knee arthroplasty: five-year follow-up of a randomized controlled trial. J Arthroplasty 27(9):1737–1741PubMedCrossRefGoogle Scholar
  49. 49.
    Huang TW, Lee CY, Lin SJ, Peng KT, Huang KC, Lee MS, Hsu RW, Shen WJ (2014) Comparison of computer-navigated and conventional total knee arthroplasty in patients with Ranawat type-II valgus deformity: medium-term clinical and radiological results. BMC Musculoskelet Disord 15:390PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Jeffery RS, Morris RW, Denham RA (1991) Coronal alignment after total knee replacement. J Bone Joint Surg Br 73(5):709–714PubMedGoogle Scholar
  51. 51.
    Ji HM, Han J, Jin DS, Seo H, Won YY (2016) Kinematically aligned TKA can align knee joint line to horizontal. Knee Surg Sports Traumatol Arthrosc 24(8):2436–2441PubMedCrossRefGoogle Scholar
  52. 52.
    Kamat YD, Aurakzai KM, Adhikari AR, Matthews D, Kalairajah Y, Field RE (2009) Does computer navigation in total knee arthroplasty improve patient outcome at midterm follow-up? Int Orthop 33(6):1567–1570PubMedCrossRefGoogle Scholar
  53. 53.
    Kendrick BJ, Kaptein BL, Valstar ER, Gill HS, Jackson WF, Dodd CA, Price AJ, Murray DW (2015) Cemented versus cementless Oxford unicompartmental knee arthroplasty using radiostereometric analysis: a randomised controlled trial. Bone Joint J 97-B(2):185–191PubMedCrossRefGoogle Scholar
  54. 54.
    Khamaisy S, Zuiderbaan HA, van der List JP, Nam D, Pearle AD (2016) Medial unicompartmental knee arthroplasty improves congruence and restores joint space width of the lateral compartment. Knee 23(3):501–505PubMedCrossRefGoogle Scholar
  55. 55.
    Kim SM, Park YS, Ha CW, Lim SJ, Moon YW (2012) Robot-assisted implantation improves the precision of component position in minimally invasive TKA. Orthopedics 35(9):e1334–e1339PubMedCrossRefGoogle Scholar
  56. 56.
    Kim TK, Chang CB, Kang YG, Chung BJ, Cho HJ, Seong SC (2010) Execution accuracy of bone resection and implant fixation in computer assisted minimally invasive total knee arthroplasty. Knee 17(1):23–28PubMedCrossRefGoogle Scholar
  57. 57.
    Kim YH, Park JW, Kim JS (2012) Computer-navigated versus conventional total knee arthroplasty: a prospective randomized trial. J Bone Joint Surg Am 94(22):2017–2024PubMedCrossRefGoogle Scholar
  58. 58.
    Kim YH, Park JW, Kim JS, Park SD (2014) The relationship between the survival of total knee arthroplasty and postoperative coronal, sagittal and rotational alignment of knee prosthesis. Int Orthop 38(2):379–385PubMedCrossRefGoogle Scholar
  59. 59.
    Konyves A, Willis-Owen CA, Spriggins AJ (2010) The long-term benefit of computer-assisted surgical navigation in unicompartmental knee arthroplasty. J Orthop Surg Res 5:94PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Koulalis D, O’Loughlin PF, Plaskos C, Kendoff D, Cross MB, Pearle AD (2011) Sequential versus automated cutting guides in computer-assisted total knee arthroplasty. Knee 18(6):436–442PubMedCrossRefGoogle Scholar
  61. 61.
    Labek G, Sekyra K, Pawelka W, Janda W, Stockl B (2011) Outcome and reproducibility of data concerning the Oxford unicompartmental knee arthroplasty: a structured literature review including arthroplasty registry data. Acta Orthop 82(2):131–135PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lee WT, Chin PL, Lo NN, Yeo SJ (2015) Short-term outcome after computer-assisted versus conventional total knee arthroplasty: a randomised controlled trial. J Orthop Surg (Hong Kong) 23(1):71–75CrossRefGoogle Scholar
  63. 63.
    Lehnen K, Giesinger K, Warschkow R, Porter M, Koch E, Kuster MS (2011) Clinical outcome using a ligament referencing technique in CAS versus conventional technique. Knee Surg Sports Traumatol Arthrosc 19(6):887–892PubMedCrossRefGoogle Scholar
  64. 64.
    Lin SY, Chen CH, Fu YC, Huang PJ, Lu CC, Su JY, Chang JK, Huang HT (2013) Comparison of the clinical and radiological outcomes of three minimally invasive techniques for total knee replacement at two years. Bone Joint J 95(7):906–910PubMedCrossRefGoogle Scholar
  65. 65.
    Liow MH, Xia Z, Wong MK, Tay KJ, Yeo SJ, Chin PL (2014) Robot-assisted total knee arthroplasty accurately restores the joint line and mechanical axis. A prospective randomised study. J Arthroplasty 29(12):2373–2377PubMedCrossRefGoogle Scholar
  66. 66.
    Liow MHL, Chin PL, Tay KJD, Chia SL, Lo NN, Yeo SJ (2014) Early experiences with robot-assisted total knee arthroplasty using the digiMatch™ ROBODOC® surgical system. Singapore Med J 55(10):529–534PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lonner JH (2009) Robotic arm-assisted unicompartmental arthroplasty. Semin Arthroplasty 20(1):15–22CrossRefGoogle Scholar
  68. 68.
    Lonner JH, John TK, Conditt MA (2010) Robotic arm-assisted UKA improves tibial component alignment: a pilot study. Clin Orthop Relat Res 468(1):141–146PubMedCrossRefGoogle Scholar
  69. 69.
    Lonner JH, Smith JR, Picard F, Hamlin B, Rowe PJ, Riches PE (2015) High degree of accuracy of a novel image-free handheld robot for unicondylar knee arthroplasty in a cadaveric study. Clin Orthop Relat Res 473(1):206–212PubMedCrossRefGoogle Scholar
  70. 70.
    Luring C, Kauper M, Bathis H, Perlick L, Beckmann J, Grifka J, Tingart M, Rath B (2012) A five to seven year follow-up comparing computer-assisted vs freehand TKR with regard to clinical parameters. Int Orthop 36(3):553–558PubMedCrossRefGoogle Scholar
  71. 71.
    Lutzner J, Dexel J, Kirschner S (2013) No difference between computer-assisted and conventional total knee arthroplasty: five-year results of a prospective randomised study. Knee Surg Sports Traumatol Arthrosc 21(10):2241–2247PubMedCrossRefGoogle Scholar
  72. 72.
    MacCallum KP, Danoff JR, Geller JA (2016) Tibial baseplate positioning in robotic-assisted and conventional unicompartmental knee arthroplasty. Eur J Orthop Surg Traumatol 26(1):93–98PubMedCrossRefGoogle Scholar
  73. 73.
    Manzotti A, Cerveri P, Pullen C, Confalonieri N (2014) Computer-assisted unicompartmental knee arthroplasty using dedicated software versus a conventional technique. Int Orthop 38(2):457–463PubMedCrossRefGoogle Scholar
  74. 74.
    Mason JB, Fehring TK, Estok R, Banel D, Fahrbach K (2007) Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery. J Arthroplasty 22(8):1097–1106PubMedCrossRefGoogle Scholar
  75. 75.
    Matziolis G, Krocker D, Weiss U, Tohtz S, Perka C (2007) A prospective, randomized study of computer-assisted and conventional total knee arthroplasty. Three-dimensional evaluation of implant alignment and rotation. J Bone Joint Surg Am 89(2):236–243PubMedGoogle Scholar
  76. 76.
    Meijer MF, Reininga IH, Boerboom AL, Bulstra SK, Stevens M (2014) Does imageless computer-assisted TKA lead to improved rotational alignment or fewer outliers? A systematic review. Clin Orthop Relat Res 472(10):3124–3133PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Molfetta L, Caldo D (2008) Computer navigation versus conventional implantation for varus knee total arthroplasty: a case-control study at 5 years follow-up. Knee 15(2):75–79PubMedCrossRefGoogle Scholar
  79. 79.
    Mont MA, Pivec R, Issa K, Kapadia BH, Maheshwari A, Harwin SF (2014) Long-term implant survivorship of cementless total knee arthroplasty: a systematic review of the literature and meta-analysis. J Knee Surg 27(5):369–376PubMedGoogle Scholar
  80. 80.
    Moon YW, Ha CW, Do KH, Kim CY, Han JH, Na SE, Lee CH, Kim JG, Park YS (2012) Comparison of robot-assisted and conventional total knee arthroplasty: a controlled cadaver study using multiparameter quantitative three-dimensional CT assessment of alignment. Comput Aided Surg 17(2):86–95PubMedCrossRefGoogle Scholar
  81. 81.
    Moskal JT, Capps SG, Mann JW, Scanelli JA (2014) Navigated versus conventional total knee arthroplasty. J Knee Surg 27(3):235–248PubMedCrossRefGoogle Scholar
  82. 82.
    Mueller JK, Wentorf FA, Moore RE (2014) Femoral and tibial insert downsizing increases the laxity envelope in TKA. Knee Surg Sports Traumatol Arthrosc 22(12):3003–3011PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Nair R, Tripathy G, Deysine GR (2014) Computer navigation systems in unicompartmental knee arthroplasty: a systematic review. Am J Orthop (Belle Mead NJ) 43(6):256–261Google Scholar
  84. 84.
    Nam D, McArthur BA, Cross MB, Pearle AD, Mayman DJ, Haas SB (2012) Patient-specific instrumentation in total knee arthroplasty: a review. J Knee Surg 25(3):213–219PubMedCrossRefGoogle Scholar
  85. 85.
    National Joint Registry for England, Wales, Northern Ireland and the Isle of Man (2015) 12th Annual reportGoogle Scholar
  86. 86.
    Nedopil AJ, Howell SM, Hull ML (2016) Does malrotation of the tibial and femoral components compromise function in kinematically aligned total knee arthroplasty? Orthop Clin North Am 47(1):41–50PubMedCrossRefGoogle Scholar
  87. 87.
    The New Zealand Joint Registry (2014) Fourteen year report. January 1999 to December 2013Google Scholar
  88. 88.
    Niinimaki TT, Murray DW, Partanen J, Pajala A, Leppilahti JI (2011) Unicompartmental knee arthroplasties implanted for osteoarthritis with partial loss of joint space have high re-operation rates. Knee 18(6):432–435PubMedCrossRefGoogle Scholar
  89. 89.
    Pabinger C, Berghold A, Boehler N, Labek G (2013) Revision rates after knee replacement. Cumulative results from worldwide clinical studies versus joint registers. Osteoarthr Cartil 21(2):263–268PubMedCrossRefGoogle Scholar
  90. 90.
    Pagnano MW, Hanssen AD, Lewallen DG, Stuart MJ (1998) Flexion instability after primary posterior cruciate retaining total knee arthroplasty. Clin Orthop Relat Res 356:39–46CrossRefGoogle Scholar
  91. 91.
    Pandit H, Jenkins C, Gill HS, Barker K, Dodd CA, Murray DW (2011) Minimally invasive Oxford phase 3 unicompartmental knee replacement: results of 1000 cases. J Bone Joint Surg Br 93(2):198–204PubMedCrossRefGoogle Scholar
  92. 92.
    Pang HN, Yeo SJ, Chong HC, Chin PL, Ong J, Lo NN (2011) Computer-assisted gap balancing technique improves outcome in total knee arthroplasty, compared with conventional measured resection technique. Knee Surg Sports Traumatol Arthrosc 19(9):1496–1503PubMedCrossRefGoogle Scholar
  93. 93.
    Park SE, Lee CT (2007) Comparison of robotic-assisted and conventional manual implantation of a primary total knee arthroplasty. J Arthroplasty 22(7):1054–1059PubMedCrossRefGoogle Scholar
  94. 94.
    Pearle AD, O’Loughlin PF, Kendoff DO (2010) Robot-assisted unicompartmental knee arthroplasty. J Arthroplasty 25(2):230–237PubMedCrossRefGoogle Scholar
  95. 95.
    Plate JF, Mofidi A, Mannava S, Smith BP, Lang JE, Poehling GG, Conditt MA, Jinnah RH (2013) Achieving accurate ligament balancing using robotic-assisted unicompartmental knee arthroplasty. Adv Orthop 2013:837167PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Rand JA, Coventry MB (1988) Ten-year evaluation of geometric total knee arthroplasty. Clin Orthop Relat Res 232:168–173Google Scholar
  97. 97.
    Rebal BA, Babatunde OM, Lee JH, Geller JA, Patrick DA Jr, Macaulay W (2014) Imageless computer navigation in total knee arthroplasty provides superior short term functional outcomes: a meta-analysis. J Arthroplasty 29(5):938–944PubMedCrossRefGoogle Scholar
  98. 98.
    Ritter MA, Faris PM, Keating EM, Meding JB (1994) Postoperative alignment of total knee replacement. Its effect on survival. Clin Orthop Relat Res 299:153–156Google Scholar
  99. 99.
    Roberts TD, Clatworthy MG, Frampton CM, Young SW (2015) Does computer assisted navigation improve functional outcomes and implant survivability after total knee arthroplasty? J Arthroplasty 30(9):59–63PubMedCrossRefGoogle Scholar
  100. 100.
    Roche M, Elson L, Anderson C (2014) Dynamic soft tissue balancing in total knee arthroplasty. Orthop Clin North Am 45(2):157–165PubMedCrossRefGoogle Scholar
  101. 101.
    Rosskopf J, Singh PK, Wolf P, Strauch M, Graichen H (2014) Influence of intentional femoral component flexion in navigated TKA on gap balance and sagittal anatomy. Knee Surg Sports Traumatol Arthrosc 22(3):687–693PubMedCrossRefGoogle Scholar
  102. 102.
    Ryd L, Lindstrand A, Stenström A, Selvik G (1990) Porous coated anatomic tricompartmental tibial components: the relationship between prosthetic position and micromotion. Clin Orthop Relat Res 251:189–197Google Scholar
  103. 103.
    Schmitt J, Hauk C, Kienapfel H, Pfeiffer M, Efe T, Fuchs-Winkelmann S, Heyse TJ (2011) Navigation of total knee arthroplasty: rotation of components and clinical results in a prospectively randomized study. BMC Musculoskelet Disord 12:16PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Schnurr C, Güdden I, Eysel P, König DP (2012) Influence of computer navigation on TKA revision rates. Int Orthop 36(11):2255–2260PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Seon JK, Song EK, Park SJ, Yoon TR, Lee KB, Jung ST (2009) Comparison of minimally invasive unicompartmental knee arthroplasty with or without a navigation system. J Arthroplasty 24(3):351–357PubMedCrossRefGoogle Scholar
  106. 106.
    Shi J, Wei Y, Wang S, Chen F, Wu J, Huang G, Chen J, Wei L, Xia J (2014) Computer navigation and total knee arthroplasty. Orthopedics 37(1):e39–e43PubMedCrossRefGoogle Scholar
  107. 107.
    Siebert W, Mai S, Kober R, Heeckt PF (2002) Technique and first clinical results of robot-assisted total knee replacement. Knee 9(3):173–180PubMedCrossRefGoogle Scholar
  108. 108.
    Sierra RJ, Kassel CA, Wetters NG, Berend KR, Della Valle CJ, Lombardi AV (2013) Revision of unicompartmental arthroplasty to total knee arthroplasty: not always a slam dunk! J Arthroplasty 28(8 Suppl):128–132PubMedCrossRefGoogle Scholar
  109. 109.
    Singh VK, Varkey R, Trehan R, Kamat Y, Raghavan R, Adhikari A (2012) Functional outcome after computer-assisted total knee arthroplasty using measured resection versus gap balancing techniques: a randomised controlled study. J Orthop Surg (Hong Kong) 20(3):344–347CrossRefGoogle Scholar
  110. 110.
    Sinha RK (2009) Outcomes of robotic arm-assisted unicompartmental knee arthroplasty. Am J Orthop (Belle Mead NJ) 38(2 Suppl):20–22Google Scholar
  111. 111.
    Smith JR, Riches PE, Rowe PJ (2014) Accuracy of a freehand sculpting tool for unicondylar knee replacement. Int J Med Robot 10(2):162–169PubMedCrossRefGoogle Scholar
  112. 112.
    Song EK, Mohite N, Lee SH, Na BR, Seon JK (2015) Comparison of outcome and survival after unicompartmental knee arthroplasty between navigation and conventional techniques with an average 9-year follow-up. J Arthroplasty 31(2):395–400PubMedCrossRefGoogle Scholar
  113. 113.
    Song EK, Seon JK, Park SJ, Jung WB, Park HW, Lee GW (2011) Simultaneous bilateral total knee arthroplasty with robotic and conventional techniques: a prospective, randomized study. Knee Surg Sports Traumatol Arthrosc 19(7):1069–1076PubMedCrossRefGoogle Scholar
  114. 114.
    Song EK, Seon JK, Yim JH, Netravali NA, Bargar WL (2013) Robotic-assisted TKA reduces postoperative alignment outliers and improves gap balance compared to conventional TKA. Clin Orthop Relat Res 471(1):118–126PubMedCrossRefGoogle Scholar
  115. 115.
    Spencer JM, Chauhan SK, Sloan K, Taylor A, Beaver RJ (2007) Computer navigation versus conventional total knee replacement: no difference in functional results at two years. J Bone Joint Surg Br 89(4):477–480PubMedCrossRefGoogle Scholar
  116. 116.
    Sriphirom P, Raungthong N, Chutchawan P, Thiranon C, Sukandhavesa N (2012) Influence of a secondary downsizing of the femoral component on the extension gap: a cadaveric study. Orthopedics 35(10 Suppl):56–59PubMedCrossRefGoogle Scholar
  117. 117.
    Stiehl JB, Heck DA (2015) How precise is computer-navigated gap assessment in TKA? Clin Orthop Relat Res 473(1):115–118PubMedCrossRefGoogle Scholar
  118. 118.
    Stulberg SD, Yaffe MA, Koo SS (2006) Computer-assisted surgery versus manual total knee arthroplasty: a case-controlled study. J Bone Joint Surg Am 88(Suppl 4):47–54PubMedGoogle Scholar
  119. 119.
    Thiengwittayaporn S, Kanjanapiboonwong A, Junsee D (2013) Midterm outcomes of electromagnetic computer-assisted navigation in minimally invasive total knee arthroplasty. J Orthop Surg Res 8:37PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Thienpont E, Fennema P, Price A (2013) Can technology improve alignment during knee arthroplasty. Knee 20:S21–S28PubMedCrossRefGoogle Scholar
  121. 121.
    Tolk JJ, Koot HW, Janssen RP (2012) Computer navigated versus conventional total knee arthroplasty. J Knee Surg 25(4):347–352PubMedCrossRefGoogle Scholar
  122. 122.
    van der List JP, Chawla H, Pearle AD (2016) Robotic-assisted knee arthroplasty: an overview. Am J Orthop (Belle Mead NJ) 45(4):202–211Google Scholar
  123. 123.
    van der List JP, Chawla H, Villa JC, Zuiderbaan HA, Pearle AD (2015) Early functional outcome after lateral UKA is sensitive to postoperative lower limb alignment. Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-015-3877-0 Google Scholar
  124. 124.
    van der List JP, Chawla H, Zuiderbaan HA, Pearle AD (2016) Patient selection criteria for unicompartmental knee arthroplasty: a meta-analysis critique. J Arthroplasty. doi: 10.1016/j.arth.2016.04.001 Google Scholar
  125. 125.
    van der List JP, McDonald LS, Pearle AD (2015) Systematic review of medial versus lateral survivorship in unicompartmental knee arthroplasty. Knee 22(6):454–460PubMedCrossRefGoogle Scholar
  126. 126.
    van der List JP, Zuiderbaan HA, Pearle AD (2016) Why do medial unicompartmental knee arthroplasties fail today? J Arthroplasty 31(5):1016–1021PubMedCrossRefGoogle Scholar
  127. 127.
    van Strien T, van der Linden-van der Zwaag E, Kaptein B, van Erkel A, Valstar E, Nelissen R (2009) Computer assisted versus conventional cemented total knee prostheses alignment accuracy and micromotion of the tibial component. Int Orthop 33 (5):1255–1261Google Scholar
  128. 128.
    Vasso M, Del Regno C, D’Amelio A, Viggiano D, Corona K, Schiavone Panni A (2015) Minor varus alignment provides better results than neutral alignment in medial UKA. Knee 22(2):117–121PubMedCrossRefGoogle Scholar
  129. 129.
    Wasielewski RC, Galante JO, Leighty RM, Natarajan RN, Rosenberg AG (1994) Wear patterns on retrieved polyethylene tibial inserts and their relationship to technical considerations during total knee arthroplasty. Clin Orthop Relat Res 299:31–43Google Scholar
  130. 130.
    Weber P, Crispin A, Schmidutz F, Utzschneider S, Pietschmann MF, Jansson V, Muller PE (2013) Improved accuracy in computer-assisted unicondylar knee arthroplasty: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 21(11):2453–2461PubMedCrossRefGoogle Scholar
  131. 131.
    Weber P, Utzschneider S, Sadoghi P, Pietschmann MF, Ficklscherer A, Jansson V, Müller PE (2012) Navigation in minimally invasive unicompartmental knee arthroplasty has no advantage in comparison to a conventional minimally invasive implantation. Arch Orthop Trauma Surg 132(2):281–288PubMedCrossRefGoogle Scholar
  132. 132.
    Whiteside LA (2005) Making your next unicompartmental knee arthroplasty last. J Arthroplasty 20:2–3PubMedCrossRefGoogle Scholar
  133. 133.
    Wright JG, Swiontkowski MF, Heckman JD (2003) Introducing levels of evidence to the journal. J Bone Joint Surg Am 85(1):1–3PubMedCrossRefGoogle Scholar
  134. 134.
    Yaffe M, Chan P, Goyal N, Luo M, Cayo M, Stulberg SD (2013) Computer-assisted versus manual TKA: no difference in clinical or functional outcomes at 5-year follow-up. Orthopedics 36(5):e627–e632PubMedCrossRefGoogle Scholar
  135. 135.
    Yang JH, Yoon JR, Pandher DS, Oh KJ (2010) Clinical and radiologic outcomes of contemporary 3 techniques of TKA. Orthopedics 33(10 Suppl):76–81PubMedCrossRefGoogle Scholar
  136. 136.
    Yildirim G, Fernandez-Madrid I, Schwarzkopf R, Walker PS, Karia R (2014) Comparison of robot surgery modular and total knee arthroplasty kinematics. J Knee Surg 27(2):157–163PubMedCrossRefGoogle Scholar
  137. 137.
    Yoshida K, Tada M, Yoshida H, Takei S, Fukuoka S, Nakamura H (2013) Oxford phase 3 unicompartmental knee arthroplasty in Japan—clinical results in greater than one thousand cases over ten years. J Arthroplasty 28(9 Suppl):168–171PubMedCrossRefGoogle Scholar
  138. 138.
    Young SW, Clarke HD, Graves SE, Liu YL, de Steiger RN (2015) Higher rate of revision in PFC sigma primary total knee arthroplasty with mismatch of femoro-tibial component sizes. J Arthroplasty 30(5):813–817PubMedCrossRefGoogle Scholar
  139. 139.
    Zamora LA, Humphreys KJ, Watt AM, Forel D, Cameron AL (2013) Systematic review of computer-navigated total knee arthroplasty. ANZ J Surg 83(1–2):22–30PubMedCrossRefGoogle Scholar
  140. 140.
    Zhang Z, Gu B, Zhu W, Zhu L, Li Q, Du Y (2014) Minimally invasive and computer-assisted total knee arthroplasty versus conventional technique: a prospective, randomized study. Eur J Orthop Surg Traumatol 24(8):1475–1479PubMedCrossRefGoogle Scholar
  141. 141.
    Zhang Z, Zhu W, Zhu L, Du Y (2014) Superior alignment but no difference in clinical outcome after minimally invasive computer-assisted unicompartmental knee arthroplasty (MICA-UKA). Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-014-3456-9 Google Scholar
  142. 142.
    Zhu M, Ang CL, Yeo SJ, Lo NN, Chia SL, Chong HC (2015) Minimally invasive computer-assisted total knee arthroplasty compared with conventional total knee arthroplasty: a prospective 9-year follow-up. J Arthroplasty 31(5):1000–1004PubMedCrossRefGoogle Scholar
  143. 143.
    Zihlmann MS, Stacoff A, Romero J, Quervain IK, Stussi E (2005) Biomechanical background and clinical observations of rotational malalignment in TKA: literature review and consequences. Clin Biomech (Bristol, Avon) 20(7):661–668CrossRefGoogle Scholar
  144. 144.
    Zuiderbaan HA, Khamaisy S, Thein R, Nawabi DH, Pearle AD (2015) Congruence and joint space width alterations of the medial compartment following lateral unicompartmental knee arthroplasty. Bone Joint J 97(1):50–55PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2016

Authors and Affiliations

  • Jelle P. van der List
    • 1
    Email author
  • Harshvardhan Chawla
    • 1
  • Leo Joskowicz
    • 2
  • Andrew D. Pearle
    • 1
  1. 1.Department of Orthopaedic Surgery, Computer Assisted Surgery Center, Hospital for Special SurgeryWeill Medical College of Cornell UniversityNew YorkUSA
  2. 2.Computer Assisted Surgery and Medical Image Processing Laboratory, School of Engineering and Computer ScienceHebrew UniversityJerusalemIsrael

Personalised recommendations